import os import random import uuid import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusion3Pipeline, DPMSolverSinglestepScheduler, AutoencoderKL from huggingface_hub import snapshot_download huggingface_token = os.getenv("HUGGINGFACE_TOKEN") snapshot_download( repo_id="stabilityai/stable-diffusion-3-medium", repo_type="model", ignore_patterns=["*.md", "*..gitattributes"], local_dir="stable-diffusion-3-medium", token=huggingface_token, # yeni bir token-id yazın. ) DESCRIPTION = """# Stable Diffusion 3""" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = False MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) USE_TORCH_COMPILE = False ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusion3Pipeline.from_pretrained("stable-diffusion-3-medium", torch_dtype=torch.float16) def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 7, randomize_seed: bool = False, num_inference_steps=30, NUM_IMAGES_PER_PROMPT=1, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) #pipe.scheduler = DPMSolverSinglestepScheduler(use_karras_sigmas=True).from_config(pipe.scheduler.config) #pipe.scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++").from_config(pipe.scheduler.config) if not use_negative_prompt: negative_prompt = None # type: ignore output = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, output_type="pil", ).images return output examples = [ "neon holography crystal cat", "a cat eating a piece of cheese", "an astronaut riding a horse in space", "a cartoon of a boy playing with a tiger", "a cute robot artist painting on an easel, concept art", "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" ] css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): gr.HTML( """