Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,366 Bytes
a99d343 e0413c6 cab2267 a99d343 b5c7bac a99d343 e0413c6 5953198 4306cde 80244a2 853c062 a99d343 b5c7bac a99d343 4306cde 7c40d47 4306cde 80244a2 4306cde 80244a2 4306cde 6b846fe 4306cde 6d51d70 4306cde 3db8d6f 4306cde 3db8d6f 4306cde 6983f8a 4306cde 7fdebcb 1847e89 7fdebcb 1847e89 7fdebcb 1847e89 4306cde 1847e89 7fdebcb 4306cde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
from ultralytics import YOLOv10
import supervision as sv
import spaces
box_annotator = sv.BoxAnnotator()
category_dict = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
@spaces.GPU(duration=200)
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
model_path = download_models(model_id)
model = YOLOv10.from_pretrained(f"jameslahm/{model_id}")
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image")
model_id = gr.Dropdown(
label="Model",
choices=[
"yolov10n",
"yolov10s",
"yolov10m",
"yolov10b",
"yolov10l",
"yolov10x",
],
value="yolov10m",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image")
yolov10_infer.click(
fn=yolov10_inference,
inputs=[
image,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"dog.jpeg",
"yolov10x.pt",
640,
0.25,
0.45,
],
[
"huggingface.jpg",
"yolov10m.pt",
640,
0.25,
0.45,
],
[
"zidane.jpg",
"yolov10b.pt",
640,
0.25,
0.45,
],
],
fn=yolov10_inference,
inputs=[
image,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10: Real-Time End-to-End Object Detection
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
Follow me for more!
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
</h3>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |