Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
def yolov9_inference(model_path, device, conf_threshold, iou_threshold, img_path, size=640):
|
5 |
+
"""
|
6 |
+
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
|
7 |
+
the input size and apply test time augmentation.
|
8 |
+
|
9 |
+
:param model_path: Path to the YOLOv9 model file.
|
10 |
+
:param device: Computation device, 'cpu' or 'cuda'.
|
11 |
+
:param conf_threshold: Confidence threshold for NMS.
|
12 |
+
:param iou_threshold: IoU threshold for NMS.
|
13 |
+
:param img_path: Path to the image file.
|
14 |
+
:param size: Optional, input size for inference.
|
15 |
+
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
16 |
+
"""
|
17 |
+
# Import YOLOv9
|
18 |
+
import yolov9
|
19 |
+
|
20 |
+
# Load the model
|
21 |
+
model = yolov9.load(model_path, device=device)
|
22 |
+
|
23 |
+
# Set model parameters
|
24 |
+
model.conf = conf_threshold
|
25 |
+
model.iou = iou_threshold
|
26 |
+
|
27 |
+
# Perform inference
|
28 |
+
results = model(img_path, size=size)
|
29 |
+
|
30 |
+
# Optionally, show detection bounding boxes on image
|
31 |
+
save_path = 'output/'
|
32 |
+
results.save(labels=True, save_dir=save_path)
|
33 |
+
|
34 |
+
|
35 |
+
return save_path + 'elon.jpg'
|
36 |
+
|
37 |
+
|
38 |
+
inputs = [
|
39 |
+
gr.Image(label="Input Image"),
|
40 |
+
gr.Dropdown(
|
41 |
+
label="Model",
|
42 |
+
choices=[
|
43 |
+
"gelan-c.pt",
|
44 |
+
"gelan-e.pt",
|
45 |
+
"yolov9-c.pt",
|
46 |
+
"yolov9-e.pt",
|
47 |
+
],
|
48 |
+
value="gelan-e.pt",
|
49 |
+
),
|
50 |
+
gr.Slider(minimum=320, maximum=1280, value=1280, step=32, label="Image Size"),
|
51 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
|
52 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
53 |
+
]
|
54 |
+
|
55 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
56 |
+
title = "YOLOv9"
|
57 |
+
|
58 |
+
demo_app = gr.Interface(
|
59 |
+
fn=yolov9_inference,
|
60 |
+
inputs=inputs,
|
61 |
+
outputs=outputs,
|
62 |
+
title=title,
|
63 |
+
)
|
64 |
+
demo_app.launch(debug=True)
|