import gradio as gr import spaces import os @spaces.GPU def yolov9_inference(img_path, model_path,image_size, conf_threshold, iou_threshold): """ Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust the input size and apply test time augmentation. :param model_path: Path to the YOLOv9 model file. :param conf_threshold: Confidence threshold for NMS. :param iou_threshold: IoU threshold for NMS. :param img_path: Path to the image file. :param size: Optional, input size for inference. :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. """ # Import YOLOv9 import yolov9 # Load the model model = yolov9.load(model_path, device="cuda:0") # Set model parameters model.conf = conf_threshold model.iou = iou_threshold # Perform inference results = model(img_path, size=image_size) # Optionally, show detection bounding boxes on image output = results.render() return output[0] inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Dropdown( label="Model", choices=[ "gelan-c.pt", "gelan-e.pt", "yolov9-c.pt", "yolov9-e.pt", ], value="gelan-c.pt", ), gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="numpy",label="Output Image") title = "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information" demo_app = gr.Interface( fn=yolov9_inference, inputs=inputs, outputs=outputs, title=title, ) demo_app.launch(debug=True)