from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel from rembg import remove from PIL import Image import torch from ip_adapter import IPAdapterXL from ip_adapter.utils import register_cross_attention_hook, get_net_attn_map, attnmaps2images from PIL import Image, ImageChops from PIL import ImageEnhance import numpy as np import glob def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" image_encoder_path = "models/image_encoder" ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin" controlnet_path = "diffusers/controlnet-depth-sdxl-1.0" device = "cuda" torch.cuda.empty_cache() # load SDXL pipeline controlnet = ControlNetModel.from_pretrained(controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to(device) pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained( base_model_path, controlnet=controlnet, use_safetensors=True, torch_dtype=torch.float16, add_watermarker=False, ).to(device) pipe.unet = register_cross_attention_hook(pipe.unet) ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device) textures = [tex.split('/')[-1].replace('.png', '') for tex in glob.glob('demo_assets/material_exemplars/*.png')] objs = [obj.split('/')[-1].replace('.png', '') for obj in glob.glob('demo_assets/input_imgs/*.png')] for texture in textures: for obj in objs: target_image_path = 'demo_assets/input_imgs/' + obj + '.png' # Replace with your image path target_image = Image.open(target_image_path).convert('RGB') rm_bg = remove(target_image) # output.save(output_path) target_mask = rm_bg.convert("RGB").point(lambda x: 0 if x < 1 else 255).convert('L').convert('RGB')# Convert mask to grayscale # Ensure mask is the same size as image # mask = ImageChops.invert(mask) # Generate random noise for the size of the image noise = np.random.randint(0, 256, target_image.size + (3,), dtype=np.uint8) noise_image = Image.fromarray(noise) mask_target_img = ImageChops.lighter(target_image, target_mask) invert_target_mask = ImageChops.invert(target_mask) gray_target_image = target_image.convert('L').convert('RGB') gray_target_image = ImageEnhance.Brightness(gray_target_image) # Adjust brightness # The factor 1.0 means original brightness, greater than 1.0 makes the image brighter. Adjust this if the image is too dim factor = 1.0 # Try adjusting this to get the desired brightness gray_target_image = gray_target_image.enhance(factor) grayscale_img = ImageChops.darker(gray_target_image, target_mask) img_black_mask = ImageChops.darker(target_image, invert_target_mask) grayscale_init_img = ImageChops.lighter(img_black_mask, grayscale_img) init_img = grayscale_init_img ip_image = Image.open("demo_assets/material_exemplars/" + texture + ".png") np_image = np.array(Image.open('demo_assets/depths/' + obj + '.png')) np_image = (np_image / 256).astype('uint8') depth_map = Image.fromarray(np_image).resize((1024,1024)) init_img = init_img.resize((1024,1024)) mask = target_mask.resize((1024, 1024)) num_samples = 1 images = ip_model.generate(pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=30, seed=42) images[0].save('demo_assets/output_images/' + obj + '_' + texture + '.png' )