frankleeeee's picture
update
e6d2ce0
raw
history blame
1.9 kB
# Dataset settings
dataset = dict(
type="VariableVideoTextDataset",
transform_name="resize_crop",
)
bucket_config = { # 2s/it
"144p": {1: (0.5, 48), 34: (1.0, 2), 51: (1.0, 4), 102: (1.0, 2), 204: (1.0, 1)},
# ---
"256": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
"240p": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
# ---
"360p": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
"512": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
# ---
"480p": {1: (0.2, 4), 17: (0.3, 1), 68: (0.0, None)},
# ---
"720p": {1: (0.1, 2)},
"1024": {1: (0.1, 2)},
# ---
"1080p": {1: (0.1, 1)},
}
grad_checkpoint = False
# Acceleration settings
num_workers = 8
num_bucket_build_workers = 16
dtype = "bf16"
plugin = "zero2"
# Model settings
model = dict(
type="STDiT3-XL/2",
from_pretrained=None,
qk_norm=True,
enable_flash_attn=True,
enable_layernorm_kernel=True,
)
vae = dict(
type="OpenSoraVAE_V1_2",
from_pretrained="pretrained_models/vae-pipeline",
micro_frame_size=17,
micro_batch_size=4,
)
text_encoder = dict(
type="t5",
from_pretrained="DeepFloyd/t5-v1_1-xxl",
model_max_length=300,
shardformer=True,
local_files_only=True,
)
scheduler = dict(
type="rflow",
use_timestep_transform=True,
sample_method="logit-normal",
)
# Mask settings
mask_ratios = {
"random": 0.2,
"intepolate": 0.01,
"quarter_random": 0.01,
"quarter_head": 0.01,
"quarter_tail": 0.01,
"quarter_head_tail": 0.01,
"image_random": 0.05,
"image_head": 0.1,
"image_tail": 0.05,
"image_head_tail": 0.05,
}
# Log settings
seed = 42
outputs = "outputs"
wandb = False
epochs = 1000
log_every = 10
ckpt_every = 500
# optimization settings
load = None
grad_clip = 1.0
lr = 1e-4
ema_decay = 0.99
adam_eps = 1e-15