Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import os
|
3 |
+
os.system("pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers")
|
4 |
+
os.system("pip install -e git+https://github.com/alvanli/RDM-Region-Aware-Diffusion-Model.git@main#egg=guided_diffusion")
|
5 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
|
6 |
+
|
7 |
+
import math
|
8 |
+
import random
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
from PIL import Image, ImageOps
|
13 |
+
from run_edit import run_model
|
14 |
+
from cool_models import make_models
|
15 |
+
|
16 |
+
help_text = """"""
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
segmodel, model, diffusion, ldm, bert, clip_model, model_params = make_models()
|
21 |
+
|
22 |
+
def load_sample():
|
23 |
+
SAMPLE_IMAGE = "./flower1.jpg"
|
24 |
+
input_image = Image.open(SAMPLE_IMAGE)
|
25 |
+
from_text = "a flower"
|
26 |
+
instruction = "a sunflower"
|
27 |
+
negative_prompt = ""
|
28 |
+
seed = 42
|
29 |
+
guidance_scale = 5.0
|
30 |
+
clip_guidance_scale = 150
|
31 |
+
cutn = 16
|
32 |
+
l2_sim_lambda = 10_000
|
33 |
+
|
34 |
+
edited_image_1 = run_model(
|
35 |
+
segmodel, model, diffusion, ldm, bert, clip_model, model_params,
|
36 |
+
from_text, instruction, negative_prompt, input_image.convert('RGB'), seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
|
37 |
+
)
|
38 |
+
|
39 |
+
return [
|
40 |
+
input_image, from_text, instruction, negative_prompt, seed, guidance_scale,
|
41 |
+
clip_guidance_scale, cutn, l2_sim_lambda, edited_image_1
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
def generate(
|
46 |
+
input_image: Image.Image,
|
47 |
+
from_text: str,
|
48 |
+
instruction: str,
|
49 |
+
negative_prompt: str,
|
50 |
+
randomize_seed: bool,
|
51 |
+
seed: int,
|
52 |
+
guidance_scale: float,
|
53 |
+
clip_guidance_scale: float,
|
54 |
+
cutn: int,
|
55 |
+
l2_sim_lambda: float
|
56 |
+
):
|
57 |
+
seed = random.randint(0, 100000) if randomize_seed else seed
|
58 |
+
|
59 |
+
if instruction == "":
|
60 |
+
return [seed, input_image]
|
61 |
+
|
62 |
+
generator = torch.manual_seed(seed)
|
63 |
+
|
64 |
+
edited_image_1 = run_model(
|
65 |
+
segmodel, model, diffusion, ldm, bert, clip_model, model_params,
|
66 |
+
from_text, instruction, negative_prompt, input_image.convert('RGB'), seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
|
67 |
+
)
|
68 |
+
|
69 |
+
return [seed, edited_image_1]
|
70 |
+
|
71 |
+
def reset():
|
72 |
+
return [
|
73 |
+
"Randomize Seed", 42, None, 5.0,
|
74 |
+
150, 16, 10000
|
75 |
+
]
|
76 |
+
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
gr.Markdown("""
|
79 |
+
#### RDM: Region-Aware Diffusion for Zero-shot Text-driven Image Editing
|
80 |
+
Original Github Repo: https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model <br/>
|
81 |
+
Instructions: <br/>
|
82 |
+
- In the "From Text" field, specify the object you are trying to modify,
|
83 |
+
- In the "edit instruction" field, specify what you want that area to be turned into
|
84 |
+
""")
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column(scale=1, min_width=100):
|
87 |
+
generate_button = gr.Button("Generate")
|
88 |
+
with gr.Column(scale=1, min_width=100):
|
89 |
+
load_button = gr.Button("Load Example")
|
90 |
+
with gr.Column(scale=1, min_width=100):
|
91 |
+
reset_button = gr.Button("Reset")
|
92 |
+
with gr.Column(scale=3):
|
93 |
+
from_text = gr.Textbox(lines=1, label="From Text", interactive=True)
|
94 |
+
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
|
95 |
+
negative_prompt = gr.Textbox(lines=1, label="Negative Prompt", interactive=True)
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
input_image = gr.Image(label="Input Image", type="pil", interactive=True)
|
99 |
+
edited_image_1 = gr.Image(label=f"Edited Image", type="pil", interactive=False)
|
100 |
+
# edited_image_2 = gr.Image(label=f"Edited Image", type="pil", interactive=False)
|
101 |
+
input_image.style(height=512, width=512)
|
102 |
+
edited_image_1.style(height=512, width=512)
|
103 |
+
# edited_image_2.style(height=512, width=512)
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
# steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
|
107 |
+
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
|
108 |
+
guidance_scale = gr.Number(value=5.0, precision=1, label="Guidance Scale", interactive=True)
|
109 |
+
clip_guidance_scale = gr.Number(value=150, precision=1, label="Clip Guidance Scale", interactive=True)
|
110 |
+
cutn = gr.Number(value=16, precision=1, label="Number of Cuts", interactive=True)
|
111 |
+
l2_sim_lambda = gr.Number(value=10000, precision=1, label="L2 similarity to original image")
|
112 |
+
|
113 |
+
randomize_seed = gr.Radio(
|
114 |
+
["Fix Seed", "Randomize Seed"],
|
115 |
+
value="Randomize Seed",
|
116 |
+
type="index",
|
117 |
+
show_label=False,
|
118 |
+
interactive=True,
|
119 |
+
)
|
120 |
+
# use_ddim = gr.Checkbox(label="Use 50-step DDIM?", value=True)
|
121 |
+
# use_ddpm = gr.Checkbox(label="Use 50-step DDPM?", value=True)
|
122 |
+
|
123 |
+
gr.Markdown(help_text)
|
124 |
+
|
125 |
+
generate_button.click(
|
126 |
+
fn=generate,
|
127 |
+
inputs=[
|
128 |
+
input_image, from_text, instruction, negative_prompt, randomize_seed,
|
129 |
+
seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
|
130 |
+
],
|
131 |
+
outputs=[seed, edited_image_1],
|
132 |
+
)
|
133 |
+
|
134 |
+
load_button.click(
|
135 |
+
fn=load_sample,
|
136 |
+
inputs=[],
|
137 |
+
outputs=[input_image, from_text, instruction, negative_prompt, seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda, edited_image_1],
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
reset_button.click(
|
142 |
+
fn=reset,
|
143 |
+
inputs=[],
|
144 |
+
outputs=[
|
145 |
+
randomize_seed, seed, edited_image_1, guidance_scale,
|
146 |
+
clip_guidance_scale, cutn, l2_sim_lambda
|
147 |
+
],
|
148 |
+
)
|
149 |
+
|
150 |
+
demo.queue(concurrency_count=1)
|
151 |
+
demo.launch(share=False, server_name="0.0.0.0")
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
main()
|