from transformers import pipeline import gradio as gr ner = pipeline("ner", model='kaiku03/bert-base-NER-finetuned_custom_complain_dataset_NER9', # grouped_entities=True, aggregation_strategy="simple" ) # function for the gradio app def fn_ner(prompt): return ner(prompt) # gradio app # Define example inputs and outputs examples = [ "Subject: Defective Date: 08-13-2023 Product: XXX speaker Location: 456 Sound Avenue, Audiotown", "Subject: Dirty Date: 08-10-2023 Product: UVW Television Location: 567 Willow Lane, Mediatown", "Subject: Missing Parts Date: 08-10-2023 Product: XXX Furniture Set Location: 1800 Antipolo Rizal Furnitown", ] iface = gr.Interface( fn=fn_ner, inputs='text', outputs=gr.Label(label="Name Entity Recognition"), examples=[ [ex] for ex in examples ], title='English to Tagalog translator', description='This demo performs language translation from English to Tagalog.', article='All done by Kaiku', ) iface.launch()