Spaces:
Sleeping
Sleeping
File size: 6,921 Bytes
cd8f06d 92f189a cd8f06d 92f189a cd8f06d f0d74e9 cd8f06d d961b40 cd8f06d d961b40 cd8f06d b61a1a9 cd8f06d ee4e1d5 cd8f06d ee4e1d5 cd8f06d 92f189a cd8f06d ee4e1d5 cd8f06d 1d73163 cd8f06d 92f189a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# -*- coding: utf-8 -*-
"""After model-fitting
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/after-model-fitting-b220d687-d8e5-4eb5-aafd-6a7e94d72073.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240128/auto/storage/goog4_request%26X-Goog-Date%3D20240128T102031Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D31877cdd720f27bacaa0efcdbe500b0697792af355976ce5280054514cedfe1be4c17db45656212f46a080c0a7f0369fbd3d051fd9be4a1275e0ea4bd55be70f65a681f6868cda1616ea83b3c65a363b81d4f59b864aa1aa82188ce4bbfca0d326422ccfaf462a4a322a86e8d752e875e2c7940fde584e9a1f0e25847bb77ad8e0131724aaec47d49e4ab42a1d2be2199c9053a26a40f3bf2a31489822ec9bb6dd378bec74e97866da9613ee7c54c6ed2ce69eee5fe34ea90293cb546e4cb1f84b3fcc6563aea8318d70e68b71e43b6d85e04a20e01980dd0c94bb837aa81446d9ecfdad1d56cbc1c940670eba9cf9dc647a8972ac13c6af15a28da735db694f
"""
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES
# TO THE CORRECT LOCATION (/kaggle/input) IN YOUR NOTEBOOK,
# THEN FEEL FREE TO DELETE THIS CELL.
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
# NOTEBOOK.
import os
import sys
from tempfile import NamedTemporaryFile
from urllib.request import urlopen
from urllib.parse import unquote, urlparse
from urllib.error import HTTPError
from zipfile import ZipFile
import tarfile
import shutil
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
"""## Import Necessary Library"""
import subprocess
subprocess.run(['pip', 'install', 'transformer'])
from transformers import AutoModel
from transformers import AutoTokenizer
subprocess.run(['pip', 'install', 'tokenizers'])
from tokenizers import Tokenizer, trainers, pre_tokenizers, models
from transformers import DebertaTokenizer
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
#import spacy
import re
import gc
# ----------
import os
config = {
'model': 'microsoft/deberta-v3-base',
'dropout': 0.2,
'max_length': 512,
'batch_size':3,
'epochs': 1,
'lr': 1e-5,
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
'scheduler': 'CosineAnnealingWarmRestarts'
}
"""### Preparation
Comparing two essays. <br>
One predicted written by students, one predicted written by LLM
"""
train_essays = pd.read_csv("train_essays.csv")
import transformers
print('transformers version:', transformers.__version__)
#train_df,val_df = train_test_split(train_essays,test_size=0.2,random_state = 101)
#train_df, val_df = train_df.reset_index(), val_df.reset_index()
#print('dataframe shapes:',train_df.shape, val_df.shape)
tokenizer = AutoTokenizer.from_pretrained(config['model'])
tokenizer.train_new_from_iterator(train_essays['text'], 52000)
"""Build the Model"""
class mymodel(nn.Module):
def __init__(self,config):
super(mymodel,self).__init__()
self.model_name = config['model']
self.deberta = AutoModel.from_pretrained(self.model_name)
#128001 = len(tokenizer)
self.deberta.resize_token_embeddings(128001)
self.dropout = nn.Dropout(config['dropout'])
self.fn0 = nn.Linear(self.deberta.config.hidden_size,256)
self.fn2 = nn.Linear(256,1)
self.pooling = MeanPooling()
def forward(self, input):
output = self.deberta(**input,return_dict = True)
output = self.pooling(output['last_hidden_state'],input['attention_mask'])
output = self.dropout(output)
output = self.fn0(output)
output = self.dropout(output)
output = self.fn2(output)
output = torch.sigmoid(output)
return output
import torch.nn as nn
class MeanPooling(nn.Module):
def __init__(self):
super(MeanPooling,self).__init__()
def forward(self,last_hidden_state, attention_mask):
new_weight = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
final = torch.sum(new_weight*last_hidden_state,1)
total_weight = new_weight.sum(1)
total_weight = torch.clamp(total_weight, min = 1e-9)
mean_embedding = final/total_weight
return mean_embedding
model = mymodel(config).to(device=config['device'])
model.load_state_dict(torch.load('my_model.pth'))
model.eval()
#preds = []
#for (inputs) in eval_loader:
# inputs = {k:inputs[k].to(device=config['device']) for k in inputs.keys()}
#
# outputs = model(inputs)
# preds.append(outputs.detach().cpu())
#preds = torch.concat(preds)
#val_df['preds'] = preds.numpy()
#val_df['AI'] = val_df['preds']>0.5
#sample_predict_AI = val_df.loc[val_df['AI'] == True].iloc[0]['text']
#sample_predict_student = val_df.loc[val_df['AI'] == False].iloc[0]['text']
#sample_predict_AI
#sample_predict_student
def trial(text):
tokenized = tokenizer.encode_plus(text,
None,
add_special_tokens=True,
max_length= config['max_length'],
truncation=True,
padding="max_length"
)
inputs = {
"input_ids": torch.tensor(tokenized['input_ids'],dtype=torch.long),
"token_type_ids": torch.tensor(tokenized['token_type_ids'],dtype=torch.long),
"attention_mask": torch.tensor(tokenized['attention_mask'],dtype = torch.long)
}
inputs = {k:inputs[k].unsqueeze(0).to(device=config['device']) for k in inputs.keys()}
if model(inputs).item()>=0.5:
return "AI"
else:
return "Student"
import subprocess
# Use subprocess to run the pip install command
subprocess.run(['pip', 'install', '-q', 'gradio==3.45.0'])
import gradio as gr
demo = gr.Interface(
fn=trial,
inputs=gr.Textbox(placeholder="..."),
outputs="textbox"
)
demo.launch(share=True)
|