# -*- coding: utf-8 -*- """After model-fitting Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/after-model-fitting-b220d687-d8e5-4eb5-aafd-6a7e94d72073.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240128/auto/storage/goog4_request%26X-Goog-Date%3D20240128T102031Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D31877cdd720f27bacaa0efcdbe500b0697792af355976ce5280054514cedfe1be4c17db45656212f46a080c0a7f0369fbd3d051fd9be4a1275e0ea4bd55be70f65a681f6868cda1616ea83b3c65a363b81d4f59b864aa1aa82188ce4bbfca0d326422ccfaf462a4a322a86e8d752e875e2c7940fde584e9a1f0e25847bb77ad8e0131724aaec47d49e4ab42a1d2be2199c9053a26a40f3bf2a31489822ec9bb6dd378bec74e97866da9613ee7c54c6ed2ce69eee5fe34ea90293cb546e4cb1f84b3fcc6563aea8318d70e68b71e43b6d85e04a20e01980dd0c94bb837aa81446d9ecfdad1d56cbc1c940670eba9cf9dc647a8972ac13c6af15a28da735db694f """ # IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES # TO THE CORRECT LOCATION (/kaggle/input) IN YOUR NOTEBOOK, # THEN FEEL FREE TO DELETE THIS CELL. # NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON # ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR # NOTEBOOK. import os import sys from tempfile import NamedTemporaryFile from urllib.request import urlopen from urllib.parse import unquote, urlparse from urllib.error import HTTPError from zipfile import ZipFile import tarfile import shutil # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session """## Import Necessary Library""" import torch.nn.functional as F from transformers import AutoModel from transformers import AutoTokenizer from tokenizers import Tokenizer, trainers, pre_tokenizers, models from transformers import DebertaTokenizer from sklearn.model_selection import train_test_split import torch import torch.nn as nn import numpy as np import pandas as pd from tqdm.notebook import tqdm import matplotlib.pyplot as plt import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer from collections import Counter #import spacy import re import gc # ---------- import os config = { 'model': 'kaitehtzeng/primary_app/microsoft/deberta-v3-base', 'dropout': 0.2, 'max_length': 512, 'batch_size':3, 'epochs': 1, 'lr': 1e-5, 'device': 'cuda' if torch.cuda.is_available() else 'cpu', 'scheduler': 'CosineAnnealingWarmRestarts' } """### Preparation Comparing two essays.
One predicted written by students, one predicted written by LLM """ train_essays = pd.read_csv("kaitehtzeng/primary_app/train_essays.csv") import transformers print('transformers version:', transformers.__version__) #train_df,val_df = train_test_split(train_essays,test_size=0.2,random_state = 101) #train_df, val_df = train_df.reset_index(), val_df.reset_index() #print('dataframe shapes:',train_df.shape, val_df.shape) tokenizer = AutoTokenizer.from_pretrained(config['model']) tokenizer.train_new_from_iterator(train_essays['text'], 52000) """Build the Model""" class mymodel(nn.Module): def __init__(self,config): super(mymodel,self).__init__() self.model_name = config['model'] self.deberta = AutoModel.from_pretrained(self.model_name) #128001 = len(tokenizer) self.deberta.resize_token_embeddings(128001) self.dropout = nn.Dropout(config['dropout']) self.fn0 = nn.Linear(self.deberta.config.hidden_size,256) self.fn2 = nn.Linear(256,1) self.pooling = MeanPooling() def forward(self, input): output = self.deberta(**input,return_dict = True) output = self.pooling(output['last_hidden_state'],input['attention_mask']) output = self.dropout(output) output = self.fn0(output) output = self.dropout(output) output = self.fn2(output) output = torch.sigmoid(output) return output import torch.nn as nn class MeanPooling(nn.Module): def __init__(self): super(MeanPooling,self).__init__() def forward(self,last_hidden_state, attention_mask): new_weight = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() final = torch.sum(new_weight*last_hidden_state,1) total_weight = new_weight.sum(1) total_weight = torch.clamp(total_weight, min = 1e-9) mean_embedding = final/total_weight return mean_embedding model = mymodel(config).to(device=config['device']) model.load_state_dict(torch.load('kaitehtzeng/primary_app/my_model.pth')) model.eval() #preds = [] #for (inputs) in eval_loader: # inputs = {k:inputs[k].to(device=config['device']) for k in inputs.keys()} # # outputs = model(inputs) # preds.append(outputs.detach().cpu()) #preds = torch.concat(preds) #val_df['preds'] = preds.numpy() #val_df['AI'] = val_df['preds']>0.5 #sample_predict_AI = val_df.loc[val_df['AI'] == True].iloc[0]['text'] #sample_predict_student = val_df.loc[val_df['AI'] == False].iloc[0]['text'] #sample_predict_AI #sample_predict_student def trial(text): tokenized = tokenizer.encode_plus(text, None, add_special_tokens=True, max_length= config['max_length'], truncation=True, padding="max_length" ) inputs = { "input_ids": torch.tensor(tokenized['input_ids'],dtype=torch.long), "token_type_ids": torch.tensor(tokenized['token_type_ids'],dtype=torch.long), "attention_mask": torch.tensor(tokenized['attention_mask'],dtype = torch.long) } inputs = {k:inputs[k].unsqueeze(0).to(device=config['device']) for k in inputs.keys()} if model(inputs).item()>=0.5: return "AI" else: return "Student" import subprocess # Use subprocess to run the pip install command subprocess.run(['pip', 'install', '-q', 'gradio==3.45.0']) import gradio as gr demo = gr.Interface( fn=trial, inputs=gr.Textbox(placeholder="..."), outputs="textbox" ) demo.launch(share=True) """### Model Fine tuning the deberta-v3-base model with new-added layers The model is later used to participate the Kaggle Competition:LLM - Detect AI Generated Text. The Auc of the model is 0.75 """