Spaces:
Sleeping
Sleeping
File size: 42,377 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
import argparse
import ast
import os
import random
import sys
import threading
import time
import torch
import io
import torch.nn.functional as F
import wx
import numpy as np
import json
from PIL import Image
from torchvision import transforms
from flask import Flask, Response
from flask_cors import CORS
from io import BytesIO
sys.path.append(os.getcwd())
from tha3.mocap.ifacialmocap_constants import *
from tha3.mocap.ifacialmocap_pose import create_default_ifacialmocap_pose
from tha3.mocap.ifacialmocap_pose_converter import IFacialMocapPoseConverter
from tha3.mocap.ifacialmocap_poser_converter_25 import create_ifacialmocap_pose_converter
from tha3.poser.modes.load_poser import load_poser
from tha3.poser.poser import Poser
from tha3.util import (
torch_linear_to_srgb, resize_PIL_image, extract_PIL_image_from_filelike,
extract_pytorch_image_from_PIL_image
)
from typing import Optional
# Global Variables
global_source_image = None
global_result_image = None
global_reload = None
is_talking_override = False
is_talking = False
global_timer_paused = False
emotion = "neutral"
lasttranisitiondPose = "NotInit"
inMotion = False
fps = 0
current_pose = None
storepath = os.path.join(os.getcwd(), "talkinghead", "emotions")
# Flask setup
app = Flask(__name__)
CORS(app)
def setEmotion(_emotion):
global emotion
highest_score = float('-inf')
highest_label = None
for item in _emotion:
if item['score'] > highest_score:
highest_score = item['score']
highest_label = item['label']
#print("Applying ", emotion)
emotion = highest_label
def unload():
global global_timer_paused
global_timer_paused = True
return "Animation Paused"
def start_talking():
global is_talking_override
is_talking_override = True
return "started"
def stop_talking():
global is_talking_override
is_talking_override = False
return "stopped"
def result_feed():
def generate():
while True:
if global_result_image is not None:
try:
rgb_image = global_result_image[:, :, [2, 1, 0]] # Swap B and R channels
pil_image = Image.fromarray(np.uint8(rgb_image)) # Convert to PIL Image
if global_result_image.shape[2] == 4: # Check if there is an alpha channel present
alpha_channel = global_result_image[:, :, 3] # Extract alpha channel
pil_image.putalpha(Image.fromarray(np.uint8(alpha_channel))) # Set alpha channel in the PIL Image
buffer = io.BytesIO() # Save as PNG with RGBA mode
pil_image.save(buffer, format='PNG')
image_bytes = buffer.getvalue()
except Exception as e:
print(f"Error when trying to write image: {e}")
yield (b'--frame\r\n' # Send the PNG image
b'Content-Type: image/png\r\n\r\n' + image_bytes + b'\r\n')
else:
time.sleep(0.1)
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
def talkinghead_load_file(stream):
global global_source_image
global global_reload
global global_timer_paused
global_timer_paused = False
try:
pil_image = Image.open(stream) # Load the image using PIL.Image.open
img_data = BytesIO() # Create a copy of the image data in memory using BytesIO
pil_image.save(img_data, format='PNG')
global_reload = Image.open(BytesIO(img_data.getvalue())) # Set the global_reload to the copy of the image data
except Image.UnidentifiedImageError:
print(f"Could not load image from file, loading blank")
full_path = os.path.join(os.getcwd(), os.path.normpath("talkinghead\\tha3\\images\\inital.png"))
MainFrame.load_image(None, full_path)
global_timer_paused = True
return 'OK'
def convert_linear_to_srgb(image: torch.Tensor) -> torch.Tensor:
rgb_image = torch_linear_to_srgb(image[0:3, :, :])
return torch.cat([rgb_image, image[3:4, :, :]], dim=0)
def launch_gui(device, model):
global initAMI
initAMI = True
parser = argparse.ArgumentParser(description='uWu Waifu')
# Add other parser arguments here
args, unknown = parser.parse_known_args()
try:
poser = load_poser(model, device)
pose_converter = create_ifacialmocap_pose_converter() #creates a list of 45
app = wx.App(redirect=False)
main_frame = MainFrame(poser, pose_converter, device)
main_frame.SetSize((750, 600))
#Lload default image (you can pass args.char if required)
full_path = os.path.join(os.getcwd(), os.path.normpath("talkinghead\\tha3\\images\\inital.png"))
main_frame.load_image(None, full_path)
#main_frame.Show(True)
main_frame.capture_timer.Start(100)
main_frame.animation_timer.Start(100)
wx.DisableAsserts() #prevent popup about debug alert closed from other threads
app.MainLoop()
except RuntimeError as e:
print(e)
sys.exit()
class FpsStatistics:
def __init__(self):
self.count = 100
self.fps = []
def add_fps(self, fps):
self.fps.append(fps)
while len(self.fps) > self.count:
del self.fps[0]
def get_average_fps(self):
if len(self.fps) == 0:
return 0.0
else:
return sum(self.fps) / len(self.fps)
class MainFrame(wx.Frame):
def __init__(self, poser: Poser, pose_converter: IFacialMocapPoseConverter, device: torch.device):
super().__init__(None, wx.ID_ANY, "uWu Waifu")
self.pose_converter = pose_converter
self.poser = poser
self.device = device
self.last_blink_timestamp = 0
self.is_blinked = False
self.targets = {"head_y_index": 0}
self.progress = {"head_y_index": 0}
self.direction = {"head_y_index": 1}
self.originals = {"head_y_index": 0}
self.forward = {"head_y_index": True} # Direction of interpolation
self.start_values = {"head_y_index": 0}
self.fps_statistics = FpsStatistics()
self.image_load_counter = 0
self.custom_background_image = None # Add this line
self.sliders = {}
self.ifacialmocap_pose = create_default_ifacialmocap_pose()
self.source_image_bitmap = wx.Bitmap(self.poser.get_image_size(), self.poser.get_image_size())
self.result_image_bitmap = wx.Bitmap(self.poser.get_image_size(), self.poser.get_image_size())
self.wx_source_image = None
self.torch_source_image = None
self.last_update_time = None
self.create_ui()
self.create_timers()
self.Bind(wx.EVT_CLOSE, self.on_close)
self.update_source_image_bitmap()
self.update_result_image_bitmap()
def create_timers(self):
self.capture_timer = wx.Timer(self, wx.ID_ANY)
self.Bind(wx.EVT_TIMER, self.update_capture_panel, id=self.capture_timer.GetId())
self.animation_timer = wx.Timer(self, wx.ID_ANY)
self.Bind(wx.EVT_TIMER, self.update_result_image_bitmap, id=self.animation_timer.GetId())
def on_close(self, event: wx.Event):
# Stop the timers
self.animation_timer.Stop()
self.capture_timer.Stop()
# Destroy the windows
self.Destroy()
event.Skip()
sys.exit(0)
def random_generate_value(self, min, max, origin_value):
random_value = random.choice(list(range(min, max, 1))) / 2500.0
randomized = origin_value + random_value
if randomized > 1.0:
randomized = 1.0
if randomized < 0:
randomized = 0
return randomized
def animationTalking(self):
global is_talking
current_pose = self.ifacialmocap_pose
# NOTE: randomize mouth
for blendshape_name in BLENDSHAPE_NAMES:
if "jawOpen" in blendshape_name:
if is_talking or is_talking_override:
current_pose[blendshape_name] = self.random_generate_value(-5000, 5000, abs(1 - current_pose[blendshape_name]))
else:
current_pose[blendshape_name] = 0
return current_pose
def animationHeadMove(self):
current_pose = self.ifacialmocap_pose
for key in [HEAD_BONE_Y]: #can add more to this list if needed
current_pose[key] = self.random_generate_value(-20, 20, current_pose[key])
return current_pose
def animationBlink(self):
current_pose = self.ifacialmocap_pose
if random.random() <= 0.03:
current_pose["eyeBlinkRight"] = 1
current_pose["eyeBlinkLeft"] = 1
else:
current_pose["eyeBlinkRight"] = 0
current_pose["eyeBlinkLeft"] = 0
return current_pose
def addNamestoConvert(pose):
index_to_name = {
0: 'eyebrow_troubled_left_index', #COMBACK TO UNK
1: 'eyebrow_troubled_right_index',#COMBACK TO UNK
2: 'eyebrow_angry_left_index',
3: 'eyebrow_angry_right_index',
4: 'unknown1', #COMBACK TO UNK
5: 'unknown2', #COMBACK TO UNK
6: 'eyebrow_raised_left_index',
7: 'eyebrow_raised_right_index',
8: 'eyebrow_happy_left_index',
9: 'eyebrow_happy_right_index',
10: 'unknown3', #COMBACK TO UNK
11: 'unknown4', #COMBACK TO UNK
12: 'wink_left_index',
13: 'wink_right_index',
14: 'eye_happy_wink_left_index',
15: 'eye_happy_wink_right_index',
16: 'eye_surprised_left_index',
17: 'eye_surprised_right_index',
18: 'unknown5', #COMBACK TO UNK
19: 'unknown6', #COMBACK TO UNK
20: 'unknown7', #COMBACK TO UNK
21: 'unknown8', #COMBACK TO UNK
22: 'eye_raised_lower_eyelid_left_index',
23: 'eye_raised_lower_eyelid_right_index',
24: 'iris_small_left_index',
25: 'iris_small_right_index',
26: 'mouth_aaa_index',
27: 'mouth_iii_index',
28: 'mouth_ooo_index',
29: 'unknown9a', #COMBACK TO UNK
30: 'mouth_ooo_index2',
31: 'unknown9', #COMBACK TO UNK
32: 'unknown10', #COMBACK TO UNK
33: 'unknown11', #COMBACK TO UNK
34: 'mouth_raised_corner_left_index',
35: 'mouth_raised_corner_right_index',
36: 'unknown12',
37: 'iris_rotation_x_index',
38: 'iris_rotation_y_index',
39: 'head_x_index',
40: 'head_y_index',
41: 'neck_z_index',
42: 'body_y_index',
43: 'body_z_index',
44: 'breathing_index'
}
output = []
for index, value in enumerate(pose):
name = index_to_name.get(index, "Unknown")
output.append(f"{name}: {value}")
return output
def get_emotion_values(self, emotion): # Place to define emotion presets
global storepath
#print(emotion)
file_path = os.path.join(storepath, emotion + ".json")
#print("trying: ", file_path)
if not os.path.exists(file_path):
print("using backup for: ", file_path)
file_path = os.path.join(storepath, "_defaults.json")
with open(file_path, 'r') as json_file:
emotions = json.load(json_file)
targetpose = emotions.get(emotion, {})
targetpose_values = targetpose
#targetpose_values = list(targetpose.values())
#print("targetpose: ", targetpose, "for ", emotion)
return targetpose_values
def animateToEmotion(self, current_pose_list, target_pose_dict):
transitionPose = []
# Loop through the current_pose_list
for item in current_pose_list:
index, value = item.split(': ')
# Always take the value from target_pose_dict if the key exists
if index in target_pose_dict and index != "breathing_index":
transitionPose.append(f"{index}: {target_pose_dict[index]}")
else:
transitionPose.append(item)
# Ensure that the number of elements in transitionPose matches with current_pose_list
assert len(transitionPose) == len(current_pose_list)
return transitionPose
def animationMain(self):
self.ifacialmocap_pose = self.animationBlink()
self.ifacialmocap_pose = self.animationHeadMove()
self.ifacialmocap_pose = self.animationTalking()
return self.ifacialmocap_pose
def filter_by_index(self, current_pose_list, index):
# Create an empty list to store the filtered dictionaries
filtered_list = []
# Iterate through each dictionary in the current_pose_list
for pose_dict in current_pose_list:
# Check if the 'breathing_index' key exists in the dictionary
if index in pose_dict:
# If the key exists, append the dictionary to the filtered list
filtered_list.append(pose_dict)
return filtered_list
def on_erase_background(self, event: wx.Event):
pass
def create_animation_panel(self, parent):
self.animation_panel = wx.Panel(parent, style=wx.RAISED_BORDER)
self.animation_panel_sizer = wx.BoxSizer(wx.HORIZONTAL)
self.animation_panel.SetSizer(self.animation_panel_sizer)
self.animation_panel.SetAutoLayout(1)
image_size = self.poser.get_image_size()
# Left Column (Image)
self.animation_left_panel = wx.Panel(self.animation_panel, style=wx.SIMPLE_BORDER)
self.animation_left_panel_sizer = wx.BoxSizer(wx.VERTICAL)
self.animation_left_panel.SetSizer(self.animation_left_panel_sizer)
self.animation_left_panel.SetAutoLayout(1)
self.animation_panel_sizer.Add(self.animation_left_panel, 1, wx.EXPAND)
self.result_image_panel = wx.Panel(self.animation_left_panel, size=(image_size, image_size),
style=wx.SIMPLE_BORDER)
self.result_image_panel.Bind(wx.EVT_PAINT, self.paint_result_image_panel)
self.result_image_panel.Bind(wx.EVT_ERASE_BACKGROUND, self.on_erase_background)
self.result_image_panel.Bind(wx.EVT_LEFT_DOWN, self.load_image)
self.animation_left_panel_sizer.Add(self.result_image_panel, 1, wx.EXPAND)
separator = wx.StaticLine(self.animation_left_panel, -1, size=(256, 1))
self.animation_left_panel_sizer.Add(separator, 0, wx.EXPAND)
self.fps_text = wx.StaticText(self.animation_left_panel, label="")
self.animation_left_panel_sizer.Add(self.fps_text, wx.SizerFlags().Border())
self.animation_left_panel_sizer.Fit(self.animation_left_panel)
# Right Column (Sliders)
self.animation_right_panel = wx.Panel(self.animation_panel, style=wx.SIMPLE_BORDER)
self.animation_right_panel_sizer = wx.BoxSizer(wx.VERTICAL)
self.animation_right_panel.SetSizer(self.animation_right_panel_sizer)
self.animation_right_panel.SetAutoLayout(1)
self.animation_panel_sizer.Add(self.animation_right_panel, 1, wx.EXPAND)
separator = wx.StaticLine(self.animation_right_panel, -1, size=(256, 5))
self.animation_right_panel_sizer.Add(separator, 0, wx.EXPAND)
background_text = wx.StaticText(self.animation_right_panel, label="--- Background ---", style=wx.ALIGN_CENTER)
self.animation_right_panel_sizer.Add(background_text, 0, wx.EXPAND)
self.output_background_choice = wx.Choice(
self.animation_right_panel,
choices=[
"TRANSPARENT",
"GREEN",
"BLUE",
"BLACK",
"WHITE",
"LOADED",
"CUSTOM"
]
)
self.output_background_choice.SetSelection(0)
self.animation_right_panel_sizer.Add(self.output_background_choice, 0, wx.EXPAND)
blendshape_groups = {
'Eyes': ['eyeLookOutLeft', 'eyeLookOutRight', 'eyeLookDownLeft', 'eyeLookUpLeft', 'eyeWideLeft', 'eyeWideRight'],
'Mouth': ['mouthFrownLeft'],
'Cheek': ['cheekSquintLeft', 'cheekSquintRight', 'cheekPuff'],
'Brow': ['browDownLeft', 'browOuterUpLeft', 'browDownRight', 'browOuterUpRight', 'browInnerUp'],
'Eyelash': ['mouthSmileLeft'],
'Nose': ['noseSneerLeft', 'noseSneerRight'],
'Misc': ['tongueOut']
}
for group_name, variables in blendshape_groups.items():
collapsible_pane = wx.CollapsiblePane(self.animation_right_panel, label=group_name, style=wx.CP_DEFAULT_STYLE | wx.CP_NO_TLW_RESIZE)
collapsible_pane.Bind(wx.EVT_COLLAPSIBLEPANE_CHANGED, self.on_pane_changed)
self.animation_right_panel_sizer.Add(collapsible_pane, 0, wx.EXPAND)
pane_sizer = wx.BoxSizer(wx.VERTICAL)
collapsible_pane.GetPane().SetSizer(pane_sizer)
for variable in variables:
variable_label = wx.StaticText(collapsible_pane.GetPane(), label=variable)
# Multiply min and max values by 100 for the slider
slider = wx.Slider(
collapsible_pane.GetPane(),
value=0,
minValue=0,
maxValue=100,
size=(150, -1), # Set the width to 150 and height to default
style=wx.SL_HORIZONTAL | wx.SL_LABELS
)
slider.SetName(variable)
slider.Bind(wx.EVT_SLIDER, self.on_slider_change)
self.sliders[slider.GetId()] = slider
pane_sizer.Add(variable_label, 0, wx.ALIGN_CENTER | wx.ALL, 5)
pane_sizer.Add(slider, 0, wx.EXPAND)
self.animation_right_panel_sizer.Fit(self.animation_right_panel)
self.animation_panel_sizer.Fit(self.animation_panel)
def on_pane_changed(self, event):
# Update the layout when a collapsible pane is expanded or collapsed
self.animation_right_panel.Layout()
def on_slider_change(self, event):
slider = event.GetEventObject()
value = slider.GetValue() / 100.0 # Divide by 100 to get the actual float value
#print(value)
slider_name = slider.GetName()
self.ifacialmocap_pose[slider_name] = value
def create_ui(self):
#MAke the UI Elements
self.main_sizer = wx.BoxSizer(wx.VERTICAL)
self.SetSizer(self.main_sizer)
self.SetAutoLayout(1)
self.capture_pose_lock = threading.Lock()
#Main panel with JPS
self.create_animation_panel(self)
self.main_sizer.Add(self.animation_panel, wx.SizerFlags(0).Expand().Border(wx.ALL, 5))
def update_capture_panel(self, event: wx.Event):
data = self.ifacialmocap_pose
for rotation_name in ROTATION_NAMES:
value = data[rotation_name]
@staticmethod
def convert_to_100(x):
return int(max(0.0, min(1.0, x)) * 100)
def paint_source_image_panel(self, event: wx.Event):
wx.BufferedPaintDC(self.source_image_panel, self.source_image_bitmap)
def update_source_image_bitmap(self):
dc = wx.MemoryDC()
dc.SelectObject(self.source_image_bitmap)
if self.wx_source_image is None:
self.draw_nothing_yet_string(dc)
else:
dc.Clear()
dc.DrawBitmap(self.wx_source_image, 0, 0, True)
del dc
def draw_nothing_yet_string(self, dc):
dc.Clear()
font = wx.Font(wx.FontInfo(14).Family(wx.FONTFAMILY_SWISS))
dc.SetFont(font)
w, h = dc.GetTextExtent("Nothing yet!")
dc.DrawText("Nothing yet!", (self.poser.get_image_size() - w) // 2, (self.poser.get_image_size() - h) // 2)
def paint_result_image_panel(self, event: wx.Event):
wx.BufferedPaintDC(self.result_image_panel, self.result_image_bitmap)
def combine_pose_with_names(combine_pose):
pose_names = [
'eyeLookInLeft', 'eyeLookOutLeft', 'eyeLookDownLeft', 'eyeLookUpLeft',
'eyeBlinkLeft', 'eyeSquintLeft', 'eyeWideLeft', 'eyeLookInRight',
'eyeLookOutRight', 'eyeLookDownRight', 'eyeLookUpRight', 'eyeBlinkRight',
'eyeSquintRight', 'eyeWideRight', 'browDownLeft', 'browOuterUpLeft',
'browDownRight', 'browOuterUpRight', 'browInnerUp', 'noseSneerLeft',
'noseSneerRight', 'cheekSquintLeft', 'cheekSquintRight', 'cheekPuff',
'mouthLeft', 'mouthDimpleLeft', 'mouthFrownLeft', 'mouthLowerDownLeft',
'mouthPressLeft', 'mouthSmileLeft', 'mouthStretchLeft', 'mouthUpperUpLeft',
'mouthRight', 'mouthDimpleRight', 'mouthFrownRight', 'mouthLowerDownRight',
'mouthPressRight', 'mouthSmileRight', 'mouthStretchRight', 'mouthUpperUpRight',
'mouthClose', 'mouthFunnel', 'mouthPucker', 'mouthRollLower', 'mouthRollUpper',
'mouthShrugLower', 'mouthShrugUpper', 'jawLeft', 'jawRight', 'jawForward',
'jawOpen', 'tongueOut', 'headBoneX', 'headBoneY', 'headBoneZ', 'headBoneQuat',
'leftEyeBoneX', 'leftEyeBoneY', 'leftEyeBoneZ', 'leftEyeBoneQuat',
'rightEyeBoneX', 'rightEyeBoneY', 'rightEyeBoneZ', 'rightEyeBoneQuat'
]
pose_dict = dict(zip(pose_names, combine_pose))
return pose_dict
def determine_data_type(self, data):
if isinstance(data, list):
print("It's a list.")
elif isinstance(data, dict):
print("It's a dictionary.")
elif isinstance(data, str):
print("It's a string.")
else:
print("Unknown data type.")
def count_elements(self, input_data):
if isinstance(input_data, list) or isinstance(input_data, dict):
return len(input_data)
else:
raise TypeError("Input must be a list or dictionary.")
def convert_list_to_dict(self, list_str):
# Evaluate the string to get the actual list
list_data = ast.literal_eval(list_str)
# Initialize an empty dictionary
result_dict = {}
# Convert the list to a dictionary
for item in list_data:
key, value_str = item.split(': ')
value = float(value_str)
result_dict[key] = value
return result_dict
def dict_to_tensor(self, d):
if isinstance(d, dict):
return torch.tensor(list(d.values()))
elif isinstance(d, list):
return torch.tensor(d)
else:
raise ValueError("Unsupported data type passed to dict_to_tensor.")
def update_ifacualmocap_pose(self, ifacualmocap_pose, emotion_pose):
# Update Values - The following values are in emotion_pose but not defined in ifacualmocap_pose
# eye_happy_wink_left_index, eye_happy_wink_right_index
# eye_surprised_left_index, eye_surprised_right_index
# eye_relaxed_left_index, eye_relaxed_right_index
# eye_unimpressed
# eye_raised_lower_eyelid_left_index, eye_raised_lower_eyelid_right_index
# mouth_uuu_index
# mouth_eee_index
# mouth_ooo_index
# mouth_delta
# mouth_smirk
# body_y_index
# body_z_index
# breathing_index
ifacualmocap_pose['browDownLeft'] = emotion_pose['eyebrow_troubled_left_index']
ifacualmocap_pose['browDownRight'] = emotion_pose['eyebrow_troubled_right_index']
ifacualmocap_pose['browOuterUpLeft'] = emotion_pose['eyebrow_angry_left_index']
ifacualmocap_pose['browOuterUpRight'] = emotion_pose['eyebrow_angry_right_index']
ifacualmocap_pose['browInnerUp'] = emotion_pose['eyebrow_happy_left_index']
ifacualmocap_pose['browInnerUp'] += emotion_pose['eyebrow_happy_right_index']
ifacualmocap_pose['browDownLeft'] = emotion_pose['eyebrow_raised_left_index']
ifacualmocap_pose['browDownRight'] = emotion_pose['eyebrow_raised_right_index']
ifacualmocap_pose['browDownLeft'] += emotion_pose['eyebrow_lowered_left_index']
ifacualmocap_pose['browDownRight'] += emotion_pose['eyebrow_lowered_right_index']
ifacualmocap_pose['browDownLeft'] += emotion_pose['eyebrow_serious_left_index']
ifacualmocap_pose['browDownRight'] += emotion_pose['eyebrow_serious_right_index']
# Update eye values
ifacualmocap_pose['eyeWideLeft'] = emotion_pose['eye_surprised_left_index']
ifacualmocap_pose['eyeWideRight'] = emotion_pose['eye_surprised_right_index']
# Update eye blink (though we will overwrite it later)
ifacualmocap_pose['eyeBlinkLeft'] = emotion_pose['eye_wink_left_index']
ifacualmocap_pose['eyeBlinkRight'] = emotion_pose['eye_wink_right_index']
# Update iris rotation values
ifacualmocap_pose['eyeLookInLeft'] = -emotion_pose['iris_rotation_y_index']
ifacualmocap_pose['eyeLookOutLeft'] = emotion_pose['iris_rotation_y_index']
ifacualmocap_pose['eyeLookInRight'] = emotion_pose['iris_rotation_y_index']
ifacualmocap_pose['eyeLookOutRight'] = -emotion_pose['iris_rotation_y_index']
ifacualmocap_pose['eyeLookUpLeft'] = emotion_pose['iris_rotation_x_index']
ifacualmocap_pose['eyeLookDownLeft'] = -emotion_pose['iris_rotation_x_index']
ifacualmocap_pose['eyeLookUpRight'] = emotion_pose['iris_rotation_x_index']
ifacualmocap_pose['eyeLookDownRight'] = -emotion_pose['iris_rotation_x_index']
# Update iris size values
ifacualmocap_pose['irisWideLeft'] = emotion_pose['iris_small_left_index']
ifacualmocap_pose['irisWideRight'] = emotion_pose['iris_small_right_index']
# Update head rotation values
ifacualmocap_pose['headBoneX'] = -emotion_pose['head_x_index'] * 15.0
ifacualmocap_pose['headBoneY'] = -emotion_pose['head_y_index'] * 10.0
ifacualmocap_pose['headBoneZ'] = emotion_pose['neck_z_index'] * 15.0
# Update mouth values
ifacualmocap_pose['mouthSmileLeft'] = emotion_pose['mouth_aaa_index']
ifacualmocap_pose['mouthSmileRight'] = emotion_pose['mouth_aaa_index']
ifacualmocap_pose['mouthFrownLeft'] = emotion_pose['mouth_lowered_corner_left_index']
ifacualmocap_pose['mouthFrownRight'] = emotion_pose['mouth_lowered_corner_right_index']
ifacualmocap_pose['mouthPressLeft'] = emotion_pose['mouth_raised_corner_left_index']
ifacualmocap_pose['mouthPressRight'] = emotion_pose['mouth_raised_corner_right_index']
return ifacualmocap_pose
def update_blinking_pose(self, tranisitiondPose):
PARTS = ['wink_left_index', 'wink_right_index']
updated_list = []
should_blink = random.random() <= 0.03 # Determine if there should be a blink
for item in tranisitiondPose:
key, value = item.split(': ')
if key in PARTS:
# If there should be a blink, set value to 1; otherwise, use the provided value
new_value = 1 if should_blink else float(value)
updated_list.append(f"{key}: {new_value}")
else:
updated_list.append(item)
return updated_list
def update_talking_pose(self, tranisitiondPose):
global is_talking, is_talking_override
MOUTHPARTS = ['mouth_aaa_index']
updated_list = []
for item in tranisitiondPose:
key, value = item.split(': ')
if key in MOUTHPARTS and is_talking_override:
new_value = self.random_generate_value(-5000, 5000, abs(1 - float(value)))
updated_list.append(f"{key}: {new_value}")
else:
updated_list.append(item)
return updated_list
def update_sway_pose_good(self, tranisitiondPose):
MOVEPARTS = ['head_y_index']
updated_list = []
print( self.start_values, self.targets, self.progress, self.direction )
for item in tranisitiondPose:
key, value = item.split(': ')
if key in MOVEPARTS:
current_value = float(value)
# If progress reaches 1 or 0
if self.progress[key] >= 1 or self.progress[key] <= 0:
# Reverse direction
self.direction[key] *= -1
# If direction is now forward, set a new target and store starting value
if self.direction[key] == 1:
self.start_values[key] = current_value
self.targets[key] = current_value + random.uniform(-1, 1)
self.progress[key] = 0 # Reset progress when setting a new target
# Use lerp to interpolate between start and target values
new_value = self.start_values[key] + self.progress[key] * (self.targets[key] - self.start_values[key])
# Ensure the value remains within bounds (just in case)
new_value = min(max(new_value, -1), 1)
# Update progress based on direction
self.progress[key] += 0.02 * self.direction[key]
updated_list.append(f"{key}: {new_value}")
else:
updated_list.append(item)
return updated_list
def update_sway_pose(self, tranisitiondPose):
MOVEPARTS = ['head_y_index']
updated_list = []
#print( self.start_values, self.targets, self.progress, self.direction )
for item in tranisitiondPose:
key, value = item.split(': ')
if key in MOVEPARTS:
current_value = float(value)
# Use lerp to interpolate between start and target values
new_value = self.start_values[key] + self.progress[key] * (self.targets[key] - self.start_values[key])
# Ensure the value remains within bounds (just in case)
new_value = min(max(new_value, -1), 1)
# Check if we've reached the target or start value
is_close_to_target = abs(new_value - self.targets[key]) < 0.04
is_close_to_start = abs(new_value - self.start_values[key]) < 0.04
if (self.direction[key] == 1 and is_close_to_target) or (self.direction[key] == -1 and is_close_to_start):
# Reverse direction
self.direction[key] *= -1
# If direction is now forward, set a new target and store starting value
if self.direction[key] == 1:
self.start_values[key] = new_value
self.targets[key] = current_value + random.uniform(-0.6, 0.6)
self.progress[key] = 0 # Reset progress when setting a new target
# Update progress based on direction
self.progress[key] += 0.04 * self.direction[key]
updated_list.append(f"{key}: {new_value}")
else:
updated_list.append(item)
return updated_list
def update_transition_pose(self, last_transition_pose_s, transition_pose_s):
inMotion = True
# Create dictionaries from the lists for easier comparison
last_transition_dict = {}
for item in last_transition_pose_s:
key = item.split(': ')[0]
value = float(item.split(': ')[1])
if key == 'unknown':
key += f"_{list(last_transition_dict.values()).count(value)}"
last_transition_dict[key] = value
transition_dict = {}
for item in transition_pose_s:
key = item.split(': ')[0]
value = float(item.split(': ')[1])
if key == 'unknown':
key += f"_{list(transition_dict.values()).count(value)}"
transition_dict[key] = value
updated_last_transition_pose = []
for key, last_value in last_transition_dict.items():
# If the key exists in transition_dict, increment its value by 0.4 and clip it to the target
if key in transition_dict:
# If the key is 'wink_left_index' or 'wink_right_index', set the value directly dont animate blinks
if key in ['wink_left_index', 'wink_right_index']: # BLINK FIX
last_value = transition_dict[key]
# For all other keys, increment its value by 0.1 of the delta and clip it to the target
else:
delta = transition_dict[key] - last_value
last_value += delta * 0.1
# Reconstruct the string and append it to the updated list
updated_last_transition_pose.append(f"{key}: {last_value}")
# If any value is less than the target, set inMotion to True
if any(last_transition_dict[k] < transition_dict[k] for k in last_transition_dict if k in transition_dict):
inMotion = True
else:
inMotion = False
return updated_last_transition_pose
def update_result_image_bitmap(self, event: Optional[wx.Event] = None):
global global_timer_paused
global initAMI
global global_result_image
global global_reload
global emotion
global fps
global current_pose
global is_talking
global is_talking_override
global lasttranisitiondPose
if global_timer_paused:
return
try:
if global_reload is not None:
MainFrame.load_image(self, event=None, file_path=None) # call load_image function here
return
#OLD METHOD
#ifacialmocap_pose = self.animationMain() #GET ANIMATION CHANGES
#current_posesaved = self.pose_converter.convert(ifacialmocap_pose)
#combined_posesaved = current_posesaved
#NEW METHOD
#CREATES THE DEFAULT POSE AND STORES OBJ IN STRING
#ifacialmocap_pose = self.animationMain() #DISABLE FOR TESTING!!!!!!!!!!!!!!!!!!!!!!!!
ifacialmocap_pose = self.ifacialmocap_pose
#print("ifacialmocap_pose", ifacialmocap_pose)
#GET EMOTION SETTING
emotion_pose = self.get_emotion_values(emotion)
#print("emotion_pose ", emotion_pose)
#MERGE EMOTION SETTING WITH CURRENT OUTPUT
updated_pose = self.update_ifacualmocap_pose(ifacialmocap_pose, emotion_pose)
#print("updated_pose ", updated_pose)
#CONVERT RESULT TO FORMAT NN CAN USE
current_pose = self.pose_converter.convert(updated_pose)
#print("current_pose ", current_pose)
#SEND THROUGH CONVERT
current_pose = self.pose_converter.convert(ifacialmocap_pose)
#print("current_pose2 ", current_pose)
#ADD LABELS/NAMES TO THE POSE
names_current_pose = MainFrame.addNamestoConvert(current_pose)
#print("current pose :", names_current_pose)
#GET THE EMOTION VALUES again for some reason
emotion_pose2 = self.get_emotion_values(emotion)
#print("target pose :", emotion_pose2)
#APPLY VALUES TO THE POSE AGAIN?? This needs to overwrite the values
tranisitiondPose = self.animateToEmotion(names_current_pose, emotion_pose2)
#print("combine pose :", tranisitiondPose)
#smooth animate
#print("LAST VALUES: ", lasttranisitiondPose)
#print("TARGER VALUES: ", tranisitiondPose)
if lasttranisitiondPose != "NotInit":
tranisitiondPose = self.update_transition_pose(lasttranisitiondPose, tranisitiondPose)
#print("smoothed: ", tranisitiondPose)
#Animate blinking
tranisitiondPose = self.update_blinking_pose(tranisitiondPose)
#Animate Head Sway
tranisitiondPose = self.update_sway_pose(tranisitiondPose)
#Animate Talking
tranisitiondPose = self.update_talking_pose(tranisitiondPose)
#reformat the data correctly
parsed_data = []
for item in tranisitiondPose:
key, value_str = item.split(': ')
value = float(value_str)
parsed_data.append((key, value))
tranisitiondPosenew = [value for _, value in parsed_data]
#not sure what this is for TBH
ifacialmocap_pose = tranisitiondPosenew
if self.torch_source_image is None:
dc = wx.MemoryDC()
dc.SelectObject(self.result_image_bitmap)
self.draw_nothing_yet_string(dc)
del dc
return
#pose = torch.tensor(tranisitiondPosenew, device=self.device, dtype=self.poser.get_dtype())
pose = self.dict_to_tensor(tranisitiondPosenew).to(device=self.device, dtype=self.poser.get_dtype())
with torch.no_grad():
output_image = self.poser.pose(self.torch_source_image, pose)[0].float()
output_image = convert_linear_to_srgb((output_image + 1.0) / 2.0)
c, h, w = output_image.shape
output_image = (255.0 * torch.transpose(output_image.reshape(c, h * w), 0, 1)).reshape(h, w, c).byte()
numpy_image = output_image.detach().cpu().numpy()
wx_image = wx.ImageFromBuffer(numpy_image.shape[0],
numpy_image.shape[1],
numpy_image[:, :, 0:3].tobytes(),
numpy_image[:, :, 3].tobytes())
wx_bitmap = wx_image.ConvertToBitmap()
dc = wx.MemoryDC()
dc.SelectObject(self.result_image_bitmap)
dc.Clear()
dc.DrawBitmap(wx_bitmap,
(self.poser.get_image_size() - numpy_image.shape[0]) // 2,
(self.poser.get_image_size() - numpy_image.shape[1]) // 2, True)
numpy_image_bgra = numpy_image[:, :, [2, 1, 0, 3]] # Convert color channels from RGB to BGR and keep alpha channel
global_result_image = numpy_image_bgra
del dc
time_now = time.time_ns()
if self.last_update_time is not None:
elapsed_time = time_now - self.last_update_time
fps = 1.0 / (elapsed_time / 10**9)
if self.torch_source_image is not None:
self.fps_statistics.add_fps(fps)
self.fps_text.SetLabelText("FPS = %0.2f" % self.fps_statistics.get_average_fps())
self.last_update_time = time_now
if(initAMI == True): #If the models are just now initalized stop animation to save
global_timer_paused = True
initAMI = False
if random.random() <= 0.01:
trimmed_fps = round(fps, 1)
#print("talkinghead FPS: {:.1f}".format(trimmed_fps))
#Store current pose to use as last pose on next loop
lasttranisitiondPose = tranisitiondPose
self.Refresh()
except KeyboardInterrupt:
print("Update process was interrupted by the user.")
wx.Exit()
def resize_image(image, size=(512, 512)):
image.thumbnail(size, Image.LANCZOS) # Step 1: Resize the image to maintain the aspect ratio with the larger dimension being 512 pixels
new_image = Image.new("RGBA", size) # Step 2: Create a new image of size 512x512 with transparency
new_image.paste(image, ((size[0] - image.size[0]) // 2,
(size[1] - image.size[1]) // 2)) # Step 3: Paste the resized image into the new image, centered
return new_image
def load_image(self, event: wx.Event, file_path=None):
global global_source_image # Declare global_source_image as a global variable
global global_reload
if global_reload is not None:
file_path = "global_reload"
try:
if file_path == "global_reload":
pil_image = global_reload
else:
pil_image = resize_PIL_image(
extract_PIL_image_from_filelike(file_path),
(self.poser.get_image_size(), self.poser.get_image_size()))
w, h = pil_image.size
if pil_image.size != (512, 512):
print("Resizing Char Card to work")
pil_image = MainFrame.resize_image(pil_image)
w, h = pil_image.size
if pil_image.mode != 'RGBA':
self.source_image_string = "Image must have alpha channel!"
self.wx_source_image = None
self.torch_source_image = None
else:
self.wx_source_image = wx.Bitmap.FromBufferRGBA(w, h, pil_image.convert("RGBA").tobytes())
self.torch_source_image = extract_pytorch_image_from_PIL_image(pil_image) \
.to(self.device).to(self.poser.get_dtype())
global_source_image = self.torch_source_image # Set global_source_image as a global variable
self.update_source_image_bitmap()
except Exception as error:
print("Error: ", error)
global_reload = None #reset the globe load
self.Refresh()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='uWu Waifu')
parser.add_argument(
'--model',
type=str,
required=False,
default='separable_float',
choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'],
help='The model to use.'
)
parser.add_argument('--char', type=str, required=False, help='The path to the character image.')
parser.add_argument(
'--device',
type=str,
required=False,
default='cuda',
choices=['cpu', 'cuda'],
help='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).'
)
args = parser.parse_args()
launch_gui(device=args.device, model=args.model)
|