import pandas as pd import re from textblob import TextBlob import numpy as np import nltk import nltk.data from nltk.sentiment.vader import SentimentIntensityAnalyzer from tqdm.notebook import tqdm sia=SentimentIntensityAnalyzer() nltk.download('vader_lexicon') def preprocess(data): pattern ='\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s-\s' messages = re.split(pattern, data)[1:] dates = re.findall(pattern, data) df = pd.DataFrame({'user_message': messages, 'message_date': dates}) df['message_date'] = pd.to_datetime(df['message_date'], format='%m/%d/%y, %H:%M - ') df.rename(columns={'message_date': 'date'}, inplace=True) users = [] messages = [] for message in df['user_message']: entry = re.split('([\w\W]+?):\s', message) if entry[1:]: users.append(entry[1]) messages.append(entry[2]) else: users.append('group_notification') messages.append(entry[0]) df['users'] = users df['message'] = messages df.drop(columns=['user_message'], inplace=True) df['year'] = df['date'].dt.year df['day'] = df['date'].dt.day df['hour'] = df['date'].dt.hour df['minute'] = df['date'].dt.minute df['Day_name'] = df['date'].dt.day_name() df['Date']=df['date'].dt.date df['Month'] = df['date'].dt.month df['Month_name'] = df['date'].dt.month_name() period = [] for hour in df[['Day_name', 'hour']]['hour']: if hour == 23: period.append(str(hour) + "-" + str('00')) elif hour == 0: period.append(str('00') + "-" + str(hour + 1)) else: period.append(str(hour) + "-" + str(hour + 1)) df['period']=period temp = df[df['users'] != 'group_notification'] temp = temp[temp['message'] != '\n'] temp.replace("", np.nan, inplace=True) temp = temp.dropna() def cleanTxt(text): text = re.sub(r'@[A-Za-z0-9]+', '', text) text = re.sub(r'#', '', text) text = text.replace('\n', "") return text temp['message'] = temp['message'].apply(cleanTxt) temp['users'] = temp['users'].apply(cleanTxt) res = {} for i, row in tqdm(temp.iterrows(), total=len(temp)): text = row['message'] myid = row['users'] res[myid] = sia.polarity_scores(text) vaders = pd.DataFrame(res).T vaders = vaders.reset_index().rename(columns={'index': 'users'}) vaders = vaders.merge(temp, how="right") vaders_new = vaders.pop('message') vaders_new = pd.DataFrame(vaders_new) vaders.insert(1, "message", vaders_new['message']) def getSubjectivity(text): return TextBlob(text).sentiment.subjectivity def getPolarity(text): return TextBlob(text).sentiment.polarity vaders['Subjectivity'] = vaders['message'].apply(getSubjectivity) vaders['Polarity'] = vaders['message'].apply(getPolarity) def getAnalysis(score): if score < 0: return 'Negative' if score == 0: return 'Neutral' else: return 'Positive' vaders['Analysis'] = vaders['Polarity'].apply(getAnalysis) def getAnalysis(score): if score <= 0: return 'Negative' if score < 0.2960: return 'Neutral' else: return 'Positive' vaders['vader_Analysis'] = vaders['compound'].apply(getAnalysis) return vaders