import spaces import gradio as gr import torch from transformers import VitsModel, VitsTokenizer, set_seed title = """

VITS TTS Demo

""" description = """ VITS is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. This demo showcases the official VITS checkpoints, trained on the [LJSpeech](https://huggingface.co/kakao-enterprise/vits-ljs) and [VCTK](https://huggingface.co/kakao-enterprise/vits-vctk) datasets. """ article = "Model by Jaehyeon Kim et al. from Kakao Enterprise. Code and demo by 🤗 Hugging Face." ljs_model = VitsModel.from_pretrained("kakao-enterprise/vits-ljs") ljs_tokenizer = VitsTokenizer.from_pretrained("kakao-enterprise/vits-ljs") vctk_model = VitsModel.from_pretrained("kakao-enterprise/vits-vctk") vctk_tokenizer = VitsTokenizer.from_pretrained("kakao-enterprise/vits-vctk") device = "cuda" if torch.cuda.is_available() else "cpu" ljs_model.to(device) vctk_model.to(device) @spaces.GPU def ljs_forward(text, speaking_rate=1.0): inputs = ljs_tokenizer(text, return_tensors="pt") inputs = inputs.to(ljs_model.device) ljs_model.speaking_rate = speaking_rate set_seed(555) with torch.no_grad(): outputs = ljs_model(**inputs)[0] waveform = outputs[0].cpu().float().numpy() return gr.make_waveform((22050, waveform)) @spaces.GPU def vctk_forward(text, speaking_rate=1.0, speaker_id=1): inputs = vctk_tokenizer(text, return_tensors="pt") inputs = inputs.to(vctk_model.device) vctk_model.speaking_rate = speaking_rate set_seed(555) with torch.no_grad(): outputs = vctk_model(**inputs, speaker_id=speaker_id - 1)[0] waveform = outputs[0].cpu().float().numpy() return gr.make_waveform((22050, waveform)) ljs_inference = gr.Interface( fn=ljs_forward, inputs=[ gr.Textbox( value="Hey, it's Hugging Face on the phone", max_lines=1, label="Input text", ), gr.Slider( 0.5, 1.5, value=1, step=0.1, label="Speaking rate", ), ], outputs=gr.Audio(), ) vctk_inference = gr.Interface( fn=vctk_forward, inputs=[ gr.Textbox( value="Hey, it's Hugging Face on the phone", max_lines=1, label="Input text", ), gr.Slider( 0.5, 1.5, value=1, step=0.1, label="Speaking rate", ), gr.Slider( 1, vctk_model.config.num_speakers, value=1, step=1, label="Speaker id", info=f"The VCTK model is trained on {vctk_model.config.num_speakers} speakers. You can prompt the model using one of these speaker ids.", ), ], outputs=gr.Audio(), ) demo = gr.Blocks() with demo: gr.Markdown(title) gr.Markdown(description) gr.TabbedInterface([ljs_inference, vctk_inference], ["LJ Speech", "VCTK"]) gr.Markdown(article) demo.queue(max_size=10) demo.launch()