File size: 5,741 Bytes
9f54a3b
 
 
 
dab5cc9
 
9f54a3b
e8f079f
9f54a3b
 
60eb20c
 
 
 
 
 
67a2453
60eb20c
 
 
 
8270bde
893c692
 
 
 
0ca86ba
9f54a3b
142827c
0029ae0
142827c
 
b8e69b4
0029ae0
e644846
0029ae0
 
 
 
 
 
 
 
 
 
 
40d82ac
6e0c914
0029ae0
 
b8e69b4
 
 
b713846
9f54a3b
 
 
60eb20c
142827c
 
8e38e68
 
142827c
 
 
 
0ca86ba
 
142827c
eabc41f
cbc7527
a93d19b
8f8cd23
a93d19b
28a3221
5a7aeea
a93d19b
47b9fa3
0201923
5a7aeea
 
f228bd3
5a7aeea
0201923
8f8cd23
74d52e7
 
 
eabc41f
b823548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60eb20c
9f54a3b
 
 
 
 
ee22b54
 
 
 
 
 
 
d9ee789
09af45b
d9ee789
0441833
5a7aeea
 
 
 
 
b823548
ae4aeac
5a7aeea
9f54a3b
3bb7e5d
0029ae0
65f8770
9f54a3b
a42067e
 
d9ee789
9f54a3b
60eb20c
9f54a3b
b823548
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()

# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Replace with your token
)

# Create supported models
model_links = {
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
    "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409",
    "EuroLLM-9B-Instruct": "utter-project/EuroLLM-9B-Instruct",
    "EuroLLM-9B": "utter-project/EuroLLM-9B",
    "Athene-V2-Chat": "Nexusflow/Athene-V2-Chat",
    
}

def reset_conversation():
    #st.session_state.conversation = []
    st.session_state.messages = []
    return None

def ask_assistant_stream(st_model, st_messages, st_temp_value, st_max_tokens):
    response={}
    try:
        stream = client.chat.completions.create(
            model=st_model,
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st_messages
            ],
            temperature=st_temp_value,
            stream=True,
            max_tokens=st_max_tokens,
        )
        response["stream"] = stream
    
    except Exception as e:
        pass

    return response

# Define the available models & Create the sidebar with the dropdown for model selection
models =[key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

# Create a max_token slider
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000))

#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button

# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

# Edit dialog for editing a message
@st.dialog("Edit Message")
def edit_message(position):
    returnText = st.text_area("message:", value = st.session_state.messages[position-1]["content"])
    
    if st.button("Save"):
        st.session_state.messages[position-1]["content"] = returnText
        st.rerun()
    if st.session_state.messages[position-1]["role"] == "user":
        if st.button("Save & Retry"):
            st.session_state.messages[position-1]["content"] = returnText
            del st.session_state.messages[position:]
            st.session_state.instant_request = True
            st.rerun()

def remove_message(position):
    st.toast("try to remove message no: " + str(position-1) + " and "+ str(position))
    del st.session_state.messages[position-2:position]

def ask_assistant_write_stream():
    # Display assistant response in chat message container
    assistant = ask_assistant_stream(model_links[selected_model], st.session_state.messages, temp_values, max_token_value)
    pos = len(st.session_state.messages)+1
    if "stream" in assistant: 
        with st.chat_message("assistant"):
            col1, col2 = st.columns([9,1])
            response = col1.write_stream(assistant["stream"])
            col2.button("", icon = ":material/edit:", key="button_edit_message_"+str(pos), args=[pos], on_click=edit_message)
            col2.button("", icon = ":material/delete:", key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message)
    else:
        with st.chat_message("assistant"):
            col1, col2 = st.columns([9,1])
            response = col1.write("Failure!")
            col2.button("", icon = ":material/delete:", key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message)

    st.session_state.messages.append({"role": "assistant", "content": response})
    


st.subheader(f'{selected_model}')

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
pos = 0
for message in st.session_state.messages:
    pos=pos+1
    with st.chat_message(message["role"]):
        col1, col2 = st.columns([9,1])
        col1.markdown(message["content"])
        col2.button("", icon = ":material/edit:", key="button_edit_message_"+str(pos), args=[pos], on_click=edit_message)
        if message["role"] == "assistant":
            col2.button("", icon = ":material/delete:", key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message)

if "instant_request" not in st.session_state:
    st.session_state.instant_request = False


if st.session_state.instant_request:
    ask_assistant_write_stream()
    st.session_state.instant_request = False

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    # Display user message in chat message container and Add user message to chat history
    pos = len(st.session_state.messages)+1
    with st.chat_message("user"):
        col1, col2 = st.columns([9,1])
        col1.markdown(prompt)
        col2.button("", icon = ":material/edit:", key="button_edit_message_"+str(pos), args=[pos], on_click=edit_message)
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display assistant response in chat message container
    ask_assistant_write_stream()