ngebodh's picture
Updated with API key call
dab5cc9 verified
raw
history blame
2.29 kB
import streamlit as st
from openai import OpenAI
import os
import sys
from langchain.callbacks import StreamlitCallbackHandler
from dotenv import load_dotenv, dotenv_values
load_dotenv()
if 'key' not in st.session_state:
st.session_state['key'] = 'value'
# initialize the client but point it to TGI
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
)
#Create supported models
model_links ={
"Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
"Gemma":"google/gemma-7b-it"
}
# Define the available models
# models = ["Mistral", "Gemma"]
models =[key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
#Pull in the model we want to use
repo_id = model_links[selected_model]
st.title(f'ChatBot Using {selected_model}')
# Set a default model
if selected_model not in st.session_state:
st.session_state[selected_model] = model_links[selected_model]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display assistant response in chat message container
with st.chat_message("assistant"):
st_callback = StreamlitCallbackHandler(st.container())
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=0.5,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})