import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load model and tokenizer model_name = "facebook/blenderbot-90M" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def chatbot_response(input_text): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Streamlit UI st.title("Emotional Support Chatbot") st.write("Chat with the emotional support bot below:") user_input = st.text_input("Your Message") if user_input: response = chatbot_response(user_input) st.text_area("Chatbot Response", response, height=150)