Spaces:
Sleeping
Sleeping
File size: 940 Bytes
e855ac0 7acea8d 2319edf 379b444 c2cfa5a 7acea8d 64202ae 7acea8d b3b1218 7acea8d c62b67e 7acea8d 668d6d8 c62b67e 7acea8d 668d6d8 7acea8d b3b1218 7acea8d c62b67e 7acea8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
"""
Coral Reef Health
"""
import gradio as gr
import tensorflow as tf
import glob
import numpy as np
from PIL import Image
model_path = "models"
model = tf.saved_model.load(model_path)
classes = [ "bleached" , "healthy" , ]
def run(image_path):
img = Image.open(image_path).convert('RGB')
img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS)
inp_numpy = np.array(img)[None]
inp = tf.constant(inp_numpy, dtype='float32')
class_scores = model(inp)[0].numpy()
print(class_scores)
state = classes[class_scores.argmax()]
return state
title = "Coral Health"
description = (
""
)
examples = glob.glob("images/*.jpg")
interface = gr.Interface(
run,
inputs=[gr.components.Image(type="filepath")],
outputs="text",
#outputs=gradio.outputs.Label(num_top_classes=3),
title=title,
description=description,
examples=examples,
)
interface.queue().launch()
|