import gradio as gr import tensorflow as tf import glob import numpy from PIL import Image model_path = "models" model = tf.saved_model.load(model_path) classes = [ "bleached" , "healthy" , ] def run(image_path): img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() state = classes[class_scores.argmax()] return state title = "Trash Detector" description = ( "" ) examples = glob.glob("images/*.png") interface = gr.Interface( run, inputs=[gr.components.Image(type="filepath")], outputs="text", #outputs=gradio.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples, ) interface.queue().launch()