import gradio as gr import tensorflow as tf import numpy from PIL import Image model_path = "Coralhealth.pb" model = tf.saved_model.load(model_path) classes = [ "bleached" , "healthy" , ] def run(image_path): img = Image.open(image_path).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = numpy.array(img)[None] inp = tensorflow.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() return class_scores title = "Trash Detector" description = ( "" ) examples = glob.glob("images/*.png") interface = gr.Interface( run, inputs=[gr.components.Image(type="filepath")], outputs="text", title=title, description=description, examples=examples, ) interface.queue().launch()