|
import glob |
|
import gradio as gr |
|
from inference import * |
|
from PIL import Image |
|
|
|
|
|
def gradio_app(image_path): |
|
"""A function that send the file to the inference pipeline, and filters |
|
some predictions before outputting to gradio interface.""" |
|
|
|
predictions = run_inference(image_path) |
|
|
|
out_img = Image.fromarray(predictions.render()[0]) |
|
|
|
return out_img |
|
|
|
|
|
Title = "Marine Life Identification" |
|
description = ( |
|
"" |
|
) |
|
|
|
examples = glob.glob("images/*.png") |
|
|
|
gr.Interface(gradio_app, |
|
inputs=[gr.inputs.Image(type="filepath")], |
|
outputs=gr.outputs.Image(type="pil"), |
|
enable_queue=True, |
|
title=Title, |
|
description=description, |
|
examples=examples).launch() |