import glob import gradio as gr from inference import * from PIL import Image def gradio_app(image_path): """A function that send the file to the inference pipeline, and filters some predictions before outputting to gradio interface.""" predictions = run_inference(image_path) out_img = Image.fromarray(predictions.render()[0]) return out_img title = "Seamore" description = "----eyes in the sea----" \ "seamore is trained on 691 classes using 33,667 localized images from " \ "MBARI’s Video Annotation and Reference System (VARS). " \ "We used the PyTorch " \ "framework and the yolov5 ‘YOLOv5x’ pretrained checkpoint to " \ "train for 28 epochs with a batch size of 18 and image size of " \ "." examples = glob.glob("images/*.png") gr.Interface(gradio_app, inputs=[gr.inputs.Image(type="filepath")], outputs=gr.outputs.Image(type="pil"), enable_queue=True, title=title, description=description, examples=examples).launch()