File size: 8,722 Bytes
bcfd8ed
 
a3c1cdf
bcfd8ed
 
 
 
e81d99c
0fe3450
bcfd8ed
b6a33ff
 
1181f17
bcfd8ed
 
 
1181f17
b6a33ff
bcfd8ed
1181f17
 
bcfd8ed
 
 
 
5ecc89c
 
 
e65910f
 
 
 
 
5ecc89c
 
1181f17
 
 
bcfd8ed
 
cb50fdb
a3c1cdf
1181f17
bcfd8ed
 
 
 
 
 
 
 
 
 
 
 
1181f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcfd8ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181f17
bcfd8ed
 
 
 
1181f17
 
 
bcfd8ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb50fdb
a3c1cdf
 
 
 
b6a33ff
bcfd8ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
'''
        Created By Lewis Kamau Kimaru 
        Sema translator fastapi implementation
        January 2024
        Docker deployment
'''

from fastapi import FastAPI, HTTPException, Request, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
import uvicorn

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import ctranslate2
import sentencepiece as spm
import fasttext
import torch

from datetime import datetime
import pytz
import time
import os

app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"],
)

# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']

fasttext.FastText.eprint = lambda x: None

# User interface
templates_folder = os.path.join(os.path.dirname(__file__), "templates")
  
# Get time of request

def get_time():
    nairobi_timezone = pytz.timezone('Africa/Nairobi')
    current_time_nairobi = datetime.now(nairobi_timezone)
    
    curr_day = current_time_nairobi.strftime('%A')
    curr_date = current_time_nairobi.strftime('%Y-%m-%d')
    curr_time = current_time_nairobi.strftime('%H:%M:%S')
    
    full_date = f"{curr_day} | {curr_date} | {curr_time}"
    return full_date, curr_time


def load_models():
    # build model and tokenizer
    model_name_dict = {
            #'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
            #'nllb-1.3B': 'facebook/nllb-200-1.3B',
            #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
            #'nllb-3.3B': 'facebook/nllb-200-3.3B',
            'nllb-moe-54b': 'facebook/nllb-moe-54b',
            }

    model_dict = {}

    for call_name, real_name in model_name_dict.items():
        print('\tLoading model: %s' % call_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
        tokenizer = AutoTokenizer.from_pretrained(real_name)
        model_dict[call_name+'_model'] = model
        model_dict[call_name+'_tokenizer'] = tokenizer

    return model_dict 

    
# Load the model and tokenizer ..... only once!
beam_size = 1  # change to a smaller value for faster inference
device = "cpu"  # or "cuda"

# Language Prediction model
print("\nimporting Language Prediction model")
lang_model_file = "lid218e.bin"
lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
lang_model = fasttext.load_model(lang_model_full_path)


# Load the source SentencePiece model
print("\nimporting SentencePiece model")
sp_model_file = "spm.model"
sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
sp = spm.SentencePieceProcessor()
sp.load(sp_model_full_path)

# Import The Translator model
'''
print("\nimporting Translator model")
ct_model_file = "sematrans-3.3B"
ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
translator = ctranslate2.Translator(ct_model_full_path, device)
'''
print("\nimporting Translator model")
model_dict = load_models()

print('\nDone importing models\n')

    
def translate_detect(userinput: str, target_lang: str):
    source_sents = [userinput]
    source_sents = [sent.strip() for sent in source_sents]
    target_prefix = [[target_lang]] * len(source_sents)

    # Predict the source language
    predictions = lang_model.predict(source_sents[0], k=1)
    source_lang = predictions[0][0].replace('__label__', '')

    # Subword the source sentences
    source_sents_subworded = sp.encode(source_sents, out_type=str)
    source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]

    # Translate the source sentences
    translations = translator.translate_batch(
        source_sents_subworded,
        batch_type="tokens",
        max_batch_size=2024,
        beam_size=beam_size,
        target_prefix=target_prefix,
    )
    translations = [translation[0]['tokens'] for translation in translations]

    # Desubword the target sentences
    translations_desubword = sp.decode(translations)
    translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]

    # Return the source language and the translated text
    return source_lang, translations_desubword

def translate_enter(userinput: str, source_lang: str, target_lang: str):  
  source_sents = [userinput]
  source_sents = [sent.strip() for sent in source_sents]
  target_prefix = [[target_lang]] * len(source_sents)

  # Subword the source sentences
  source_sents_subworded = sp.encode(source_sents, out_type=str)
  source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]

  # Translate the source sentences
  translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix)
  translations = [translation[0]['tokens'] for translation in translations]

  # Desubword the target sentences
  translations_desubword = sp.decode(translations)
  translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]

  # Return the source language and the translated text
  return translations_desubword[0]


def translate_faster(userinput3: str, source_lang3: str, target_lang3: str):
    if len(model_dict) == 2:
        model_name = 'nllb-moe-54b'
        
    start_time = time.time()
    
    model = model_dict[model_name + '_model']
    tokenizer = model_dict[model_name + '_tokenizer']

    translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source_lang3, tgt_lang=target_lang3)
    output = translator(userinput3, max_length=400)
    end_time = time.time()

    output = output[0]['translation_text']
    result = {'inference_time': end_time - start_time,
              'source': source,
              'target': target,
              'result': output}
    return result
    
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    return HTMLResponse(content=open(os.path.join(templates_folder, "translator.html"), "r").read(), status_code=200)

    
@app.post("/translate_detect/")
async def translate_detect_endpoint(request: Request):
    datad = await request.json()
    userinputd = datad.get("userinput")
    target_langd = datad.get("target_lang")
    dfull_date = get_time()[0]
    print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n")

    if not userinputd or not target_langd:
        raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")

    source_langd, translated_text_d = translate_detect(userinputd, target_langd)
    dcurrent_time = get_time()[1]
    print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n")
    return {
        "source_language": source_langd,
        "translated_text": translated_text_d[0],
    }


@app.post("/translate_enter/")
async def translate_enter_endpoint(request: Request):
    datae = await request.json()
    userinpute = datae.get("userinput")
    source_lange = datae.get("source_lang")
    target_lange = datae.get("target_lang")
    efull_date = get_time()[0]
    print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n")

    if not userinpute or not target_lange:
        raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")

    translated_text_e = translate_enter(userinpute, source_lange, target_lange)
    ecurrent_time = get_time()[1]
    print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n")
    return {
        "translated_text": translated_text_e,
    }


@app.post("/translate_faster/")
async def translate_faster_endpoint(request: Request):
    dataf = await request.json()
    userinputf = datae.get("userinput")
    source_langf = datae.get("source_lang")
    target_langf = datae.get("target_lang")
    ffull_date = get_time()[0]
    print(f"\nrequest: {ffull_date}\nSource_language; {source_langf}, Target Language; {target_langf}, User Input: {userinputf}\n")

    if not userinputf or not target_langf:
        raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")

    translated_text_f = translate_faster(userinputf, source_langf, target_langf)
    fcurrent_time = get_time()[1]
    print(f"\nresponse: {fcurrent_time}; ... Translated Text: {translated_text_f}\n\n")
    return {
        "translated_text": translated_text_f,
    }
    
print("\nAPI started successfully 😁\n")