dreamcreature / app.py
kamwoh's picture
copied from dreamcreature main repo
617065a
raw
history blame
7.39 kB
import gc
import os
import re
import shutil
import gradio as gr
import requests
import torch
from dreamcreature.pipeline import create_args, load_pipeline
CUB_DESCRIPTION = """
# DreamCreature (CUB-200-2011)
To create your own creature, you can type:
`"a photo of a <head:id> <wing:id> bird"` where `id` ranges from 1~200 (200 classes corresponding to CUB-200-2011)
For instance `"a photo of a <head:17> <wing:18> bird"` using head of `cardinal (17)` and wing of `spotted catbird (18)`
Please see `id` in https://github.com/kamwoh/dreamcreature/blob/master/src/data/cub200_2011/class_names.txt
You can also try any prompt you like such as:
Sub-concept transfer: `"a photo of a <wing:17> cat"`
Inspiring design: `"a photo of a <head:101> <wing:191> teddy bear"`
(Experimental) You can also use two parts together such as:
`"a photo of a <head:17> <head:18> bird"` mixing head of `cardinal (17)` and `spotted catbird (18)`
The current available parts are: `head`, `body`, `wing`, `tail`, and `leg`
"""
DOG_DESCRIPTION = """
# DreamCreature (Stanford Dogs)
To create your own creature, you can type:
`"a photo of a <nose:id> <ear:id> dog"` where `id` ranges from 0~119 (120 classes corresponding to Stanford Dogs)
For instance `"a photo of a <nose:2> <ear:112> dog"` using head of `maltese dog (2)` and wing of `cardigan (112)`
Please see `id` in https://github.com/kamwoh/dreamcreature/blob/master/src/data/dogs/class_names.txt
Sub-concept transfer: `"a photo of a <ear:112> cat"`
Inspiring design: `"a photo of a <eye:38> <body:38> teddy bear"`
(Experimental) You can also use two parts together such as:
`"a photo of a <nose:1> <nose:112> dog"` mixing head of `maltese dog (2)` and `spotted cardigan (112)`
The current available parts are: `eye`, `neck`, `ear`, `body`, `leg`, `nose` and `forehead`
"""
def prepare_pipeline(model_name):
is_cub = 'cub' in model_name
checkpoint_name = {
'dreamcreature-sd1.5-cub200': 'checkpoint-74900',
'dreamcreature-sd1.5-dog': 'checkpoint-150000'
}
repo_url = f"https://huggingface.co/kamwoh/{model_name}/resolve/main"
file_url = repo_url + f"/{checkpoint_name}/pytorch_model.bin"
local_path = f"{model_name}/{checkpoint_name}/pytorch_model.bin"
os.makedirs(f"{model_name}/{checkpoint_name}", exist_ok=True)
download_file(file_url, local_path)
file_url = repo_url + f"/{checkpoint_name}/pytorch_model_1.bin"
local_path = f"{model_name}/{checkpoint_name}/pytorch_model_1.bin"
download_file(file_url, local_path)
OUTPUT_DIR = model_name
args = create_args(OUTPUT_DIR)
if 'dpo' in OUTPUT_DIR:
args.unet_path = "mhdang/dpo-sd1.5-text2image-v1"
pipe = load_pipeline(args, torch.float16, 'cuda')
pipe = pipe.to(torch.float16)
pipe.verbose = True
pipe.v = 're'
if is_cub:
pipe.num_k_per_part = 200
MAPPING = {
'body': 0,
'tail': 1,
'head': 2,
'wing': 4,
'leg': 6
}
ID2NAME = open('data/cub200_2011/class_names.txt').readlines()
ID2NAME = [line.strip() for line in ID2NAME]
else:
pipe.num_k_per_part = 120
MAPPING = {
'eye': 0,
'neck': 2,
'ear': 3,
'body': 4,
'leg': 5,
'nose': 6,
'forehead': 7
}
ID2NAME = open('data/dogs/class_names.txt').readlines()
ID2NAME = [line.strip() for line in ID2NAME]
return pipe, MAPPING, ID2NAME
def download_file(url, local_path):
if os.path.exists(local_path):
return
with requests.get(url, stream=True) as r:
with open(local_path, 'wb') as f:
shutil.copyfileobj(r.raw, f)
def process_text(text, MAPPING, ID2NAME):
pattern = r"<([^:>]+):(\d+)>"
result = text
offset = 0
part2id = []
for match in re.finditer(pattern, text):
key = match.group(1)
clsid = int(match.group(2))
clsid = min(max(clsid, 1), 200) # must be 1~200
replacement = f"<{MAPPING[key]}:{clsid - 1}>"
start, end = match.span()
# Adjust the start and end positions based on the offset from previous replacements
start += offset
end += offset
# Replace the matched text with the replacement
result = result[:start] + replacement + result[end:]
# Update the offset for the next replacement
offset += len(replacement) - (end - start)
part2id.append(f'{key}: {ID2NAME[clsid - 1]}')
return result, part2id
def generate_images(model_name, prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, seed):
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(int(seed))
try:
pipe, MAPPING, ID2NAME = prepare_pipeline(model_name)
prompt, part2id = process_text(prompt, MAPPING, ID2NAME)
negative_prompt, _ = process_text(negative_prompt, MAPPING, ID2NAME)
images = pipe(prompt,
negative_prompt=negative_prompt, generator=generator,
num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale,
num_images_per_prompt=num_images).images
del pipe
except Exception as e:
raise gr.Error(f"Probably due to the prompt have invalid input, please follow the instruction. "
f"The error message: {e}")
finally:
gc.collect()
torch.cuda.empty_cache()
return images, '; '.join(part2id)
with gr.Blocks(title="DreamCreature") as demo:
with gr.Row():
main_desc = gr.Markdown(CUB_DESCRIPTION)
with gr.Column():
with gr.Row():
with gr.Group():
dropdown = gr.Dropdown(choices=["dreamcreature-sd1.5-cub200",
"dreamcreature-sd1.5-dog"],
value="dreamcreature-sd1.5-cub200")
prompt = gr.Textbox(label="Prompt", value="a photo of a <head:101> <wing:191> teddy bear")
negative_prompt = gr.Textbox(label="Negative Prompt",
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Num Inference Steps")
guidance_scale = gr.Slider(minimum=2, maximum=20, step=0.1, value=7.5, label="Guidance Scale")
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
seed = gr.Number(label="Seed", value=777881414)
button = gr.Button()
with gr.Column():
output_images = gr.Gallery(columns=4, label='Output')
markdown_labels = gr.Markdown("")
dropdown.change(fn=lambda x: {'dreamcreature-sd1.5-cub200': CUB_DESCRIPTION,
'dreamcreature-sd1.5-dog': DOG_DESCRIPTION}[x], inputs=dropdown, outputs=main_desc)
button.click(fn=generate_images,
inputs=[dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale, num_images,
seed], outputs=[output_images, markdown_labels], show_progress=True)
demo.queue().launch(inline=False, share=True, debug=True, server_name='0.0.0.0')