Spaces:
Runtime error
Runtime error
"""Call API providers.""" | |
import json | |
import os | |
import random | |
import re | |
from typing import Optional | |
import time | |
import requests | |
from .utils import build_logger | |
logger = build_logger("gradio_web_server", "gradio_web_server.log") | |
def get_api_provider_stream_iter( | |
conv, | |
model_name, | |
model_api_dict, | |
temperature, | |
top_p, | |
max_new_tokens, | |
state, | |
): | |
if model_api_dict["api_type"] == "openai": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_openai_vision_api_messages() | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
# api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"].find("openai-custom") >= 0: | |
if conv.get_system_message() == "": | |
if model_api_dict["api_type"] == "openai-custom-tanuki": | |
conv.set_system_message('以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。') | |
elif model_api_dict["api_type"] == "openai-custom-calm": | |
conv.set_system_message('あなたは親切なAIアシスタントです。') | |
elif model_api_dict["api_type"] == "openai-custom-deepinfra": | |
conv.set_system_message( | |
'あなたは親切な日本語のアシスタントです。') | |
if "api_key" in model_api_dict: | |
api_key = model_api_dict["api_key"] | |
else: | |
api_key = os.environ[model_api_dict["env_api_key"]] | |
if "api_base" in model_api_dict: | |
api_base = model_api_dict["api_base"] | |
elif "api_end" in model_api_dict: | |
api_base = os.environ["LOCAL_LLM_URL"] | |
end = model_api_dict["api_end"] | |
api_base = f"{api_base}/{end}/" | |
messages = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=api_base, | |
api_key=api_key, | |
# api_key=os.environ[model_api_dict["env_api_key"]], | |
# api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "openai-llama3.1": | |
if conv.get_system_message() == "": | |
conv.set_system_message('あなたは誠実で優秀な日本人のアシスタントです。') | |
messages = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=f"{os.environ.get('LOCAL_LLM_URL')}/{model_api_dict['api_end']}/", | |
api_key=os.environ[model_api_dict["env_api_key"]], | |
stop="<|im_end|>", | |
) | |
elif model_api_dict["api_type"] == "openai-llmjp3": | |
if conv.get_system_message() == "": | |
conv.set_system_message('以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。') | |
messages = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=f"{os.environ.get('LOCAL_LLM_URL')}/{model_api_dict['api_end']}/", | |
api_key=os.environ[model_api_dict["env_api_key"]], | |
stop="<|im_end|>", | |
) | |
elif model_api_dict["api_type"] == "openai_no_stream": | |
prompt = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
# api_key=model_api_dict["api_key"], | |
stream=False, | |
) | |
elif model_api_dict["api_type"] == "openai_o1": | |
prompt = conv.to_openai_api_messages() | |
stream_iter = openai_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict["api_key"], | |
is_o1=True, | |
) | |
elif model_api_dict["api_type"] == "openai_assistant": | |
last_prompt = conv.messages[-2][1] | |
stream_iter = openai_assistant_api_stream_iter( | |
state, | |
last_prompt, | |
assistant_id=model_api_dict["assistant_id"], | |
api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "anthropic": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_anthropic_vision_api_messages() | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = anthropic_api_stream_iter( | |
model_name, prompt, temperature, top_p, max_new_tokens | |
) | |
elif model_api_dict["api_type"] == "anthropic_message": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_anthropic_vision_api_messages() | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = anthropic_message_api_stream_iter( | |
model_api_dict["model_name"], prompt, temperature, top_p, max_new_tokens | |
) | |
elif model_api_dict["api_type"] == "anthropic_message_vertex": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_anthropic_vision_api_messages() | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = anthropic_message_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
vertex_ai=True, | |
) | |
elif model_api_dict["api_type"] == "gemini": | |
prompt = conv.to_gemini_api_messages() | |
stream_iter = gemini_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
# api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "gemini_no_stream": | |
prompt = conv.to_gemini_api_messages() | |
stream_iter = gemini_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
# api_key=model_api_dict["api_key"], | |
use_stream=False, | |
) | |
elif model_api_dict["api_type"] == "bard": | |
prompt = conv.to_openai_api_messages() | |
stream_iter = gemini_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
None, # use Bard's default temperature | |
None, # use Bard's default top_p | |
max_new_tokens, | |
api_key=(model_api_dict["api_key"] or os.environ["BARD_API_KEY"]), | |
use_stream=False, | |
) | |
elif model_api_dict["api_type"] == "mistral": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_openai_vision_api_messages(is_mistral=True) | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = mistral_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_key=None, | |
) | |
elif model_api_dict["api_type"] == "nvidia": | |
prompt = conv.to_openai_api_messages() | |
stream_iter = nvidia_api_stream_iter( | |
model_name, | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
model_api_dict["api_base"], | |
model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "ai2": | |
prompt = conv.to_openai_api_messages() | |
stream_iter = ai2_api_stream_iter( | |
model_name, | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "vertex": | |
prompt = conv.to_vertex_api_messages() | |
stream_iter = vertex_api_stream_iter( | |
model_name, prompt, temperature, top_p, max_new_tokens | |
) | |
elif model_api_dict["api_type"] == "yandexgpt": | |
# note: top_p parameter is unused by yandexgpt | |
messages = [] | |
if conv.system_message: | |
messages.append({"role": "system", "text": conv.system_message}) | |
messages += [ | |
{"role": role, "text": text} | |
for role, text in conv.messages | |
if text is not None | |
] | |
fixed_temperature = model_api_dict.get("fixed_temperature") | |
if fixed_temperature is not None: | |
temperature = fixed_temperature | |
stream_iter = yandexgpt_api_stream_iter( | |
model_name=model_api_dict["model_name"], | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict.get("api_key"), | |
folder_id=model_api_dict.get("folder_id"), | |
) | |
elif model_api_dict["api_type"] == "cohere": | |
messages = conv.to_openai_api_messages() | |
stream_iter = cohere_api_stream_iter( | |
client_name=model_api_dict.get("client_name", "FastChat"), | |
model_id=model_api_dict["model_name"], | |
messages=messages, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
# api_base=model_api_dict["api_base"], | |
# api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "reka": | |
messages = conv.to_reka_api_messages() | |
stream_iter = reka_api_stream_iter( | |
model_name=model_api_dict["model_name"], | |
messages=messages, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "column": | |
if model_api_dict.get("vision-arena", False): | |
prompt = conv.to_openai_vision_api_messages() | |
else: | |
prompt = conv.to_openai_api_messages() | |
stream_iter = column_api_stream_iter( | |
model_name=model_api_dict["model_name"], | |
messages=prompt, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict["api_key"], | |
) | |
elif model_api_dict["api_type"] == "metagen": | |
prompt = conv.to_metagen_api_messages() | |
stream_iter = metagen_api_stream_iter( | |
model_api_dict["model_name"], | |
prompt, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=model_api_dict["api_base"], | |
api_key=model_api_dict["api_key"], | |
) | |
else: | |
raise NotImplementedError() | |
return stream_iter | |
def openai_api_stream_iter( | |
model_name, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=None, | |
api_key=None, | |
stream=True, | |
is_o1=False, | |
stop="dummy_stop_token123456789", | |
): | |
import openai | |
api_key = api_key or os.environ["OPENAI_API_KEY"] | |
if "azure" in model_name: | |
client = openai.AzureOpenAI( | |
api_version="2023-07-01-preview", | |
azure_endpoint=api_base or "https://api.openai.com/v1", | |
api_key=api_key, | |
) | |
else: | |
client = openai.OpenAI( | |
base_url=api_base or "https://api.openai.com/v1", | |
api_key=api_key, | |
timeout=180, | |
) | |
# Make requests for logging | |
text_messages = [] | |
for message in messages: | |
if type(message["content"]) == str: # text-only model | |
text_messages.append(message) | |
else: # vision model | |
filtered_content_list = [ | |
content for content in message["content"] if content["type"] == "text" | |
] | |
text_messages.append( | |
{"role": message["role"], "content": filtered_content_list} | |
) | |
gen_params = { | |
"model": model_name, | |
"prompt": text_messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
if stream and not is_o1: | |
res = client.chat.completions.create( | |
model=model_name, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_new_tokens, | |
stream=True, | |
stop=stop, | |
) | |
text = "" | |
for chunk in res: | |
if len(chunk.choices) > 0: | |
text += chunk.choices[0].delta.content or "" | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
else: | |
if is_o1: | |
res = client.chat.completions.create( | |
model=model_name, | |
messages=messages, | |
temperature=1.0, | |
stream=False, | |
) | |
else: | |
res = client.chat.completions.create( | |
model=model_name, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_new_tokens, | |
stream=False, | |
) | |
text = res.choices[0].message.content | |
pos = 0 | |
while pos < len(text): | |
# simulate token streaming | |
pos += 2 | |
time.sleep(0.001) | |
data = { | |
"text": text[:pos], | |
"error_code": 0, | |
} | |
yield data | |
def column_api_stream_iter( | |
model_name, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_base=None, | |
api_key=None, | |
): | |
try: | |
messages_no_img = [] | |
for msg in messages: | |
msg_no_img = msg.copy() | |
msg_no_img.pop("attachment", None) | |
messages_no_img.append(msg_no_img) | |
gen_params = { | |
"model": model_name, | |
"messages": messages_no_img, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
"seed": 42, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
gen_params["messages"] = messages | |
gen_params["stream"] = True | |
# payload.pop("model") | |
# try 3 times | |
for i in range(3): | |
try: | |
response = requests.post( | |
api_base, json=gen_params, stream=True, timeout=30 | |
) | |
break | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
if i == 2: | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: API timeout. please try again later.", | |
"error_code": 1, | |
} | |
return | |
text = "" | |
for line in response.iter_lines(): | |
if line: | |
data = line.decode("utf-8") | |
if data.startswith("data:"): | |
data = json.loads(data[6:])["message"] | |
text += data | |
yield {"text": text, "error_code": 0} | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: Unknown.", | |
"error_code": 1, | |
} | |
def upload_openai_file_to_gcs(file_id): | |
import openai | |
from google.cloud import storage | |
storage_client = storage.Client() | |
file = openai.files.content(file_id) | |
# upload file to GCS | |
bucket = storage_client.get_bucket("arena_user_content") | |
blob = bucket.blob(f"{file_id}") | |
blob.upload_from_string(file.read()) | |
blob.make_public() | |
return blob.public_url | |
def openai_assistant_api_stream_iter( | |
state, | |
prompt, | |
assistant_id, | |
api_key=None, | |
): | |
import openai | |
import base64 | |
api_key = api_key or os.environ["OPENAI_API_KEY"] | |
client = openai.OpenAI( | |
base_url="https://api.openai.com/v1", api_key=api_key) | |
if state.oai_thread_id is None: | |
logger.info("==== create thread ====") | |
thread = client.beta.threads.create() | |
state.oai_thread_id = thread.id | |
logger.info(f"==== thread_id ====\n{state.oai_thread_id}") | |
thread_message = client.beta.threads.messages.with_raw_response.create( | |
state.oai_thread_id, | |
role="user", | |
content=prompt, | |
timeout=3, | |
) | |
# logger.info(f"header {thread_message.headers}") | |
thread_message = thread_message.parse() | |
# Make requests | |
gen_params = { | |
"assistant_id": assistant_id, | |
"thread_id": state.oai_thread_id, | |
"message": prompt, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
res = requests.post( | |
f"https://api.openai.com/v1/threads/{state.oai_thread_id}/runs", | |
headers={ | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json", | |
"OpenAI-Beta": "assistants=v1", | |
}, | |
json={"assistant_id": assistant_id, "stream": True}, | |
timeout=30, | |
stream=True, | |
) | |
list_of_text = [] | |
list_of_raw_text = [] | |
offset_idx = 0 | |
full_ret_text = "" | |
idx_mapping = {} | |
cur_offset = 0 | |
for line in res.iter_lines(): | |
if not line: | |
continue | |
data = line.decode("utf-8") | |
# logger.info("data:", data) | |
if data.endswith("[DONE]"): | |
break | |
if data.startswith("event"): | |
event = data.split(":")[1].strip() | |
if event == "thread.message.completed": | |
offset_idx += len(list_of_text) | |
continue | |
data = json.loads(data[6:]) | |
if data.get("status") == "failed": | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: {data['last_error']['message']}", | |
"error_code": 1, | |
} | |
return | |
if data.get("status") == "completed": | |
logger.info(f"[debug]: {data}") | |
if data["object"] != "thread.message.delta": | |
continue | |
for delta in data["delta"]["content"]: | |
text_index = delta["index"] + offset_idx | |
if len(list_of_text) <= text_index: | |
list_of_text.append("") | |
list_of_raw_text.append("") | |
text = list_of_text[text_index] | |
raw_text = list_of_raw_text[text_index] | |
if delta["type"] == "text": | |
# text, url_citation or file_path | |
content = delta["text"] | |
if "annotations" in content and len(content["annotations"]) > 0: | |
annotations = content["annotations"] | |
raw_text_copy = text | |
for anno in annotations: | |
if anno["type"] == "url_citation": | |
pattern = r"【\d+†source】" | |
matches = re.findall(pattern, content["value"]) | |
if len(matches) > 0: | |
for match in matches: | |
print(match) | |
if match not in idx_mapping: | |
idx_mapping[match] = len( | |
idx_mapping) + 1 | |
citation_number = idx_mapping[match] | |
start_idx = anno["start_index"] + cur_offset | |
end_idx = anno["end_index"] + cur_offset | |
url = anno["url_citation"]["url"] | |
citation = f" [[{citation_number}]]({url})" | |
raw_text_copy = ( | |
raw_text_copy[:start_idx] | |
+ citation | |
+ raw_text_copy[end_idx:] | |
) | |
cur_offset += len(citation) - (end_idx - start_idx) | |
elif anno["type"] == "file_path": | |
file_public_url = upload_openai_file_to_gcs( | |
anno["file_path"]["file_id"] | |
) | |
raw_text_copy = raw_text_copy.replace( | |
anno["text"], f"{file_public_url}" | |
) | |
text = raw_text_copy | |
else: | |
text_content = content["value"] | |
text += text_content | |
elif delta["type"] == "image_file": | |
image_public_url = upload_openai_file_to_gcs( | |
delta["image_file"]["file_id"] | |
) | |
text += f"![image]({image_public_url})" | |
list_of_text[text_index] = text | |
list_of_raw_text[text_index] = raw_text | |
full_ret_text = "\n".join(list_of_text) | |
yield {"text": full_ret_text, "error_code": 0} | |
def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens): | |
import anthropic | |
c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
# Make requests | |
gen_params = { | |
"model": model_name, | |
"prompt": prompt, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
res = c.messages.create( | |
# res = c.completions.create( | |
# prompt=prompt, | |
messages=prompt, | |
# stop_sequences=[anthropic.HUMAN_PROMPT], | |
# max_tokens_to_sample=max_new_tokens, | |
max_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
model=model_name, | |
stream=True, | |
) | |
text = "" | |
text = "" | |
for chunk in res: | |
if hasattr(chunk, 'delta'): | |
if hasattr(chunk.delta, 'text'): | |
if chunk.delta.text is not None: | |
if isinstance(chunk.delta.text, str): | |
text += chunk.delta.text | |
elif isinstance(chunk.delta.text, list): | |
text += ''.join(chunk.delta.text) | |
elif hasattr(chunk, 'message') and chunk.message.content is not None: | |
if isinstance(chunk.message.content, str): | |
text += chunk.message.content | |
elif isinstance(chunk.message.content, list): | |
text += ''.join(chunk.message.content) | |
else: | |
print(chunk) | |
continue | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
# for chunk in res: | |
# text += chunk.completion | |
# text += chunk.text_stream | |
# data = { | |
# "text": text, | |
# "error_code": 0, | |
# } | |
# yield data | |
def anthropic_message_api_stream_iter( | |
model_name, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
vertex_ai=False, | |
): | |
import anthropic | |
if vertex_ai: | |
client = anthropic.AnthropicVertex( | |
region=os.environ["GCP_LOCATION"], | |
project_id=os.environ["GCP_PROJECT_ID"], | |
max_retries=5, | |
) | |
else: | |
client = anthropic.Anthropic( | |
api_key=os.environ["ANTHROPIC_API_KEY"], | |
max_retries=5, | |
) | |
text_messages = [] | |
for message in messages: | |
if type(message["content"]) == str: # text-only model | |
text_messages.append(message) | |
else: # vision model | |
filtered_content_list = [ | |
content for content in message["content"] if content["type"] == "text" | |
] | |
text_messages.append( | |
{"role": message["role"], "content": filtered_content_list} | |
) | |
# Make requests for logging | |
gen_params = { | |
"model": model_name, | |
"prompt": text_messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
system_prompt = "" | |
if messages[0]["role"] == "system": | |
if type(messages[0]["content"]) == dict: | |
system_prompt = messages[0]["content"]["text"] | |
elif type(messages[0]["content"]) == str: | |
system_prompt = messages[0]["content"] | |
# remove system prompt | |
messages = messages[1:] | |
text = "" | |
with client.messages.stream( | |
temperature=temperature, | |
top_p=top_p, | |
max_tokens=max_new_tokens, | |
messages=messages, | |
model=model_name, | |
system=system_prompt, | |
) as stream: | |
for chunk in stream.text_stream: | |
text += chunk | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
def gemini_api_stream_iter( | |
model_name, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_key=None, | |
use_stream=True, | |
): | |
import google.generativeai as genai # pip install google-generativeai | |
if api_key is None: | |
api_key = os.environ["GEMINI_API_KEY"] | |
genai.configure(api_key=api_key) | |
generation_config = { | |
"temperature": temperature, | |
"max_output_tokens": max_new_tokens, | |
"top_p": top_p, | |
} | |
params = { | |
"model": model_name, | |
"prompt": messages, | |
} | |
params.update(generation_config) | |
logger.info(f"==== request ====\n{params}") | |
safety_settings = [ | |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"}, | |
] | |
history = [] | |
system_prompt = None | |
for message in messages[:-1]: | |
if message["role"] == "system": | |
system_prompt = message["content"] | |
continue | |
history.append({"role": message["role"], "parts": message["content"]}) | |
model = genai.GenerativeModel( | |
model_name=model_name, | |
system_instruction=system_prompt, | |
generation_config=generation_config, | |
safety_settings=safety_settings, | |
) | |
convo = model.start_chat(history=history) | |
if use_stream: | |
response = convo.send_message(messages[-1]["content"], stream=True) | |
try: | |
text = "" | |
for chunk in response: | |
text += chunk.candidates[0].content.parts[0].text | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
reason = chunk.candidates | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: {reason}.", | |
"error_code": 1, | |
} | |
else: | |
try: | |
response = convo.send_message( | |
messages[-1]["content"], stream=False) | |
text = response.candidates[0].content.parts[0].text | |
pos = 0 | |
while pos < len(text): | |
# simulate token streaming | |
pos += 5 | |
time.sleep(0.001) | |
data = { | |
"text": text[:pos], | |
"error_code": 0, | |
} | |
yield data | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: {e}.", | |
"error_code": 1, | |
} | |
def ai2_api_stream_iter( | |
model_name, | |
model_id, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_key=None, | |
api_base=None, | |
): | |
# get keys and needed values | |
ai2_key = api_key or os.environ.get("AI2_API_KEY") | |
api_base = api_base or "https://inferd.allen.ai/api/v1/infer" | |
# Make requests | |
gen_params = { | |
"model": model_name, | |
"prompt": messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
# AI2 uses vLLM, which requires that `top_p` be 1.0 for greedy sampling: | |
# https://github.com/vllm-project/vllm/blob/v0.1.7/vllm/sampling_params.py#L156-L157 | |
if temperature == 0.0 and top_p < 1.0: | |
raise ValueError("top_p must be 1 when temperature is 0.0") | |
res = requests.post( | |
api_base, | |
stream=True, | |
headers={"Authorization": f"Bearer {ai2_key}"}, | |
json={ | |
"model_id": model_id, | |
# This input format is specific to the Tulu2 model. Other models | |
# may require different input formats. See the model's schema | |
# documentation on InferD for more information. | |
"input": { | |
"messages": messages, | |
"opts": { | |
"max_tokens": max_new_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"logprobs": 1, # increase for more choices | |
}, | |
}, | |
}, | |
timeout=5, | |
) | |
if res.status_code != 200: | |
logger.error(f"unexpected response ({res.status_code}): {res.text}") | |
raise ValueError("unexpected response from InferD", res) | |
text = "" | |
for line in res.iter_lines(): | |
if line: | |
part = json.loads(line) | |
if "result" in part and "output" in part["result"]: | |
for t in part["result"]["output"]["text"]: | |
text += t | |
else: | |
logger.error(f"unexpected part: {part}") | |
raise ValueError("empty result in InferD response") | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
def mistral_api_stream_iter( | |
model_name, messages, temperature, top_p, max_new_tokens, api_key=None | |
): | |
# from mistralai.client import MistralClient | |
# from mistralai.models.chat_completion import ChatMessage | |
from mistralai import Mistral | |
if api_key is None: | |
api_key = os.environ["MISTRAL_API_KEY"] | |
client = Mistral(api_key=api_key) | |
# Make requests for logging | |
text_messages = [] | |
for message in messages: | |
if type(message["content"]) == str: # text-only model | |
text_messages.append(message) | |
else: # vision model | |
filtered_content_list = [ | |
content for content in message["content"] if content["type"] == "text" | |
] | |
text_messages.append( | |
{"role": message["role"], "content": filtered_content_list} | |
) | |
# Make requests | |
gen_params = { | |
"model": model_name, | |
"prompt": text_messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
# new_messages = [ | |
# ChatMessage(role=message["role"], content=message["content"]) | |
# for message in messages | |
# ] | |
res = client.chat.stream( | |
model=model_name, | |
temperature=temperature, | |
messages=messages, | |
max_tokens=max_new_tokens, | |
top_p=top_p, | |
) | |
text = "" | |
for chunk in res: | |
if chunk.data.choices[0].delta.content is not None: | |
text += chunk.data.choices[0].delta.content | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
def nvidia_api_stream_iter( | |
model_name, messages, temp, top_p, max_tokens, api_base, api_key=None | |
): | |
model_2_api = { | |
"nemotron-4-340b": "/b0fcd392-e905-4ab4-8eb9-aeae95c30b37", | |
} | |
api_base += model_2_api[model_name] | |
api_key = api_key or os.environ["NVIDIA_API_KEY"] | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"accept": "text/event-stream", | |
"content-type": "application/json", | |
} | |
# nvidia api does not accept 0 temperature | |
if temp == 0.0: | |
temp = 0.000001 | |
payload = { | |
"model": model_name, | |
"messages": messages, | |
"temperature": temp, | |
"top_p": top_p, | |
"max_tokens": max_tokens, | |
"seed": 42, | |
"stream": True, | |
} | |
logger.info(f"==== request ====\n{payload}") | |
# payload.pop("model") | |
# try 3 times | |
for i in range(3): | |
try: | |
response = requests.post( | |
api_base, headers=headers, json=payload, stream=True, timeout=3 | |
) | |
break | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
if i == 2: | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: API timeout. please try again later.", | |
"error_code": 1, | |
} | |
return | |
text = "" | |
for line in response.iter_lines(): | |
if line: | |
data = line.decode("utf-8") | |
if data.endswith("[DONE]"): | |
break | |
data = json.loads(data[6:])["choices"][0]["delta"]["content"] | |
text += data | |
yield {"text": text, "error_code": 0} | |
def yandexgpt_api_stream_iter( | |
model_name, messages, temperature, max_tokens, api_base, api_key, folder_id | |
): | |
api_key = api_key or os.environ["YANDEXGPT_API_KEY"] | |
headers = { | |
"Authorization": f"Api-Key {api_key}", | |
"content-type": "application/json", | |
} | |
payload = { | |
"modelUri": f"gpt://{folder_id}/{model_name}", | |
"completionOptions": { | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
"stream": True, | |
}, | |
"messages": messages, | |
} | |
logger.info(f"==== request ====\n{payload}") | |
# https://llm.api.cloud.yandex.net/foundationModels/v1/completion | |
response = requests.post( | |
api_base, headers=headers, json=payload, stream=True, timeout=60 | |
) | |
text = "" | |
for line in response.iter_lines(): | |
if line: | |
data = json.loads(line.decode("utf-8")) | |
data = data["result"] | |
top_alternative = data["alternatives"][0] | |
text = top_alternative["message"]["text"] | |
yield {"text": text, "error_code": 0} | |
status = top_alternative["status"] | |
if status in ( | |
"ALTERNATIVE_STATUS_FINAL", | |
"ALTERNATIVE_STATUS_TRUNCATED_FINAL", | |
): | |
break | |
def cohere_api_stream_iter( | |
client_name: str, | |
model_id: str, | |
messages: list, | |
temperature: Optional[ | |
float | |
] = None, # The SDK or API handles None for all parameters following | |
top_p: Optional[float] = None, | |
max_new_tokens: Optional[int] = None, | |
api_key: Optional[str] = None, # default is env var CO_API_KEY | |
api_base: Optional[str] = None, | |
): | |
import cohere | |
if api_key is None: | |
api_key = os.environ["COHERE_API_KEY"] | |
OPENAI_TO_COHERE_ROLE_MAP = { | |
"user": "User", | |
"assistant": "Chatbot", | |
"system": "System", | |
} | |
# client = cohere.ClientV2( | |
client = cohere.Client( | |
api_key=api_key, | |
# base_url=api_base, | |
# client_name=client_name, | |
) | |
# prepare and log requests | |
chat_history = [ | |
dict( | |
role=OPENAI_TO_COHERE_ROLE_MAP[message["role"] | |
], message=message["content"] | |
) | |
for message in messages[:-1] | |
] | |
actual_prompt = messages[-1]["content"] | |
gen_params = { | |
"model": model_id, | |
"messages": messages, | |
"chat_history": chat_history, | |
"prompt": actual_prompt, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
# make request and stream response | |
res = client.chat_stream( | |
# messages=messages, | |
message=actual_prompt, | |
chat_history=chat_history, | |
model=model_id, | |
temperature=temperature, | |
max_tokens=max_new_tokens, | |
p=top_p, | |
) | |
try: | |
text = "" | |
for streaming_item in res: | |
if streaming_item.event_type == "text-generation": | |
text += streaming_item.text | |
yield {"text": text, "error_code": 0} | |
except cohere.core.ApiError as e: | |
logger.error(f"==== error from cohere api: {e} ====") | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: {e}", | |
"error_code": 1, | |
} | |
def vertex_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens): | |
import vertexai | |
from vertexai import generative_models | |
from vertexai.generative_models import ( | |
GenerationConfig, | |
GenerativeModel, | |
Image, | |
) | |
project_id = os.environ.get("GCP_PROJECT_ID", None) | |
location = os.environ.get("GCP_LOCATION", None) | |
vertexai.init(project=project_id, location=location) | |
text_messages = [] | |
for message in messages: | |
if type(message) == str: | |
text_messages.append(message) | |
gen_params = { | |
"model": model_name, | |
"prompt": text_messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
safety_settings = [ | |
generative_models.SafetySetting( | |
category=generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT, | |
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE, | |
), | |
generative_models.SafetySetting( | |
category=generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH, | |
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE, | |
), | |
generative_models.SafetySetting( | |
category=generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, | |
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE, | |
), | |
generative_models.SafetySetting( | |
category=generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, | |
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE, | |
), | |
] | |
generator = GenerativeModel(model_name).generate_content( | |
messages, | |
stream=True, | |
generation_config=GenerationConfig( | |
top_p=top_p, max_output_tokens=max_new_tokens, temperature=temperature | |
), | |
safety_settings=safety_settings, | |
) | |
ret = "" | |
for chunk in generator: | |
# NOTE(chris): This may be a vertex api error, below is HOTFIX: https://github.com/googleapis/python-aiplatform/issues/3129 | |
ret += chunk.candidates[0].content.parts[0]._raw_part.text | |
# ret += chunk.text | |
data = { | |
"text": ret, | |
"error_code": 0, | |
} | |
yield data | |
def reka_api_stream_iter( | |
model_name: str, | |
messages: list, | |
temperature: Optional[ | |
float | |
] = None, # The SDK or API handles None for all parameters following | |
top_p: Optional[float] = None, | |
max_new_tokens: Optional[int] = None, | |
api_key: Optional[str] = None, # default is env var CO_API_KEY | |
api_base: Optional[str] = None, | |
): | |
from reka.client import Reka | |
from reka import TypedText | |
api_key = api_key or os.environ["REKA_API_KEY"] | |
client = Reka(api_key=api_key) | |
use_search_engine = False | |
if "-online" in model_name: | |
model_name = model_name.replace("-online", "") | |
use_search_engine = True | |
request = { | |
"model_name": model_name, | |
"conversation_history": messages, | |
"temperature": temperature, | |
"request_output_len": max_new_tokens, | |
"runtime_top_p": top_p, | |
"stream": True, | |
"use_search_engine": use_search_engine, | |
} | |
# Make requests for logging | |
text_messages = [] | |
for turn in messages: | |
for message in turn.content: | |
if isinstance(message, TypedText): | |
text_messages.append( | |
{"type": message.type, "text": message.text}) | |
logged_request = dict(request) | |
logged_request["conversation_history"] = text_messages | |
logger.info(f"==== request ====\n{logged_request}") | |
response = client.chat.create_stream( | |
messages=messages, | |
max_tokens=max_new_tokens, | |
top_p=top_p, | |
model=model_name, | |
) | |
for chunk in response: | |
try: | |
yield {"text": chunk.responses[0].chunk.content, "error_code": 0} | |
except: | |
yield { | |
"text": f"**API REQUEST ERROR** ", | |
"error_code": 1, | |
} | |
def metagen_api_stream_iter( | |
model_name, | |
messages, | |
temperature, | |
top_p, | |
max_new_tokens, | |
api_key, | |
api_base, | |
): | |
try: | |
text_messages = [] | |
for message in messages: | |
if type(message["content"]) == str: # text-only model | |
text_messages.append(message) | |
else: # vision model | |
filtered_content_list = [ | |
content | |
for content in message["content"] | |
if content["type"] == "text" | |
] | |
text_messages.append( | |
{"role": message["role"], "content": filtered_content_list} | |
) | |
gen_params = { | |
"model": model_name, | |
"prompt": text_messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
logger.info(f"==== request ====\n{gen_params}") | |
res = requests.post( | |
f"{api_base}/chat_stream_completions?access_token={api_key}", | |
stream=True, | |
headers={"Content-Type": "application/json"}, | |
json={ | |
"model": model_name, | |
"chunks_delimited": True, | |
"messages": messages, | |
"options": { | |
"max_tokens": max_new_tokens, | |
"generation_algorithm": "top_p", | |
"top_p": top_p, | |
"temperature": temperature, | |
}, | |
}, | |
timeout=30, | |
) | |
if res.status_code != 200: | |
logger.error( | |
f"Unexpected response ({res.status_code}): {res.text}") | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: Unknown.", | |
"error_code": 1, | |
} | |
text = "" | |
for line in res.iter_lines(): | |
if line: | |
part = json.loads(line.decode("utf-8")) | |
if "text" in part: | |
text += part["text"] | |
data = { | |
"text": text, | |
"error_code": 0, | |
} | |
yield data | |
except Exception as e: | |
logger.error(f"==== error ====\n{e}") | |
yield { | |
"text": f"**API REQUEST ERROR** Reason: Unknown.", | |
"error_code": 1, | |
} | |