File size: 3,187 Bytes
9230ccf
b865247
b8c3f0e
af40ecb
 
 
eb0d262
9230ccf
 
 
b8c3f0e
 
 
 
 
9230ccf
 
 
 
 
eb0d262
9230ccf
 
 
 
eb0d262
 
9230ccf
 
 
 
 
 
 
 
 
 
 
4f21439
b865247
4f21439
9230ccf
104a909
9230ccf
 
 
 
 
34c2c1b
 
 
9230ccf
 
b8c3f0e
9230ccf
 
 
dedce6c
 
 
 
 
 
 
 
 
 
 
 
 
 
9230ccf
 
 
eb0d262
 
2728067
b8c3f0e
2dc9a9e
b8c3f0e
9230ccf
 
 
 
 
 
 
 
 
a885267
dedce6c
 
a885267
 
dedce6c
a885267
e0d07cd
a885267
e0d07cd
 
9230ccf
 
a885267
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)


def respond(
    message,
    history: list[tuple[str, str]],
    # system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [
        {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        # response += token
        if token is not None:
            response += (token)
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

# カスタムCSS
custom_css = """
#chatbox {
    height: 600px; /* 高さを調整 */
    overflow-y: auto; /* 縦方向のスクロールを可能に */
}

.gradio-chatbot .message {
    max-width: 80%; /* チャットボックスの横幅調整 */
    margin-bottom: 20px; /* メッセージ間のマージン調整 */
}
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        # gr.Textbox(value="You are a friendly Chatbot.",
        #           label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=1024,
                  step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.3,
                  step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、入出力データは著作権フリー(CC0)で公開予定ですので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
"""
# グループ化して表示
with gr.Blocks(css=custom_css) as interface:
    # 説明文を表示
    gr.Markdown(description)
    # ChatInterfaceを表示
    demo.render()
    # components = [gr.Markdown(description), demo]

if __name__ == "__main__":
    # demo.launch()
    interface.launch()