Spaces:
Sleeping
Sleeping
import gradio as gr | |
from openai import OpenAI | |
import os | |
import json | |
from datetime import datetime | |
from zoneinfo import ZoneInfo | |
import uuid | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
openai_api_key = os.getenv('api_key') | |
openai_api_base = os.getenv('url') | |
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0" | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
client = OpenAI( | |
api_key=openai_api_key, | |
base_url=openai_api_base, | |
) | |
# Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run. | |
feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json" | |
feedback_folder = feedback_file.parent | |
# Schedule regular uploads. Remote repo and local folder are created if they don't already exist. | |
scheduler = CommitScheduler( | |
repo_id="team-hatakeyama-phase2/8x8b-server-original-data4", # Replace with your actual repo ID | |
repo_type="dataset", | |
folder_path=feedback_folder, | |
path_in_repo="data", | |
every=60, # Upload every 1 minutes | |
) | |
def save_or_update_conversation(conversation_id, history, | |
message, response, message_index, liked=None): | |
""" | |
Save or update conversation data in a JSON Lines file. | |
If the entry already exists (same id and message_index), update the 'label' field. | |
Otherwise, append a new entry. | |
""" | |
with scheduler.lock: | |
# Read existing data | |
data = [] | |
if feedback_file.exists(): | |
with feedback_file.open("r") as f: | |
data = [json.loads(line) for line in f if line.strip()] | |
# Find if an entry with the same id and message_index exists | |
#entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None) | |
#if entry_index is not None: | |
## # Update existing entry | |
# data[entry_index]['label'] = liked | |
#else: | |
#always append | |
if True: | |
# Append new entry | |
data.append({ | |
#"id": conversation_id, | |
"timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(), | |
"history":json.dumps(history,ensure_ascii=False), | |
"prompt": str(message), | |
"completion": str(response), | |
#"message_index": message_index, | |
"label": liked | |
}) | |
# Write updated data back to file | |
with feedback_file.open("w") as f: | |
for entry in data: | |
f.write(json.dumps(entry,ensure_ascii=False) + "\n") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
conversation_id, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [ | |
{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in client.chat.completions.create( | |
model=model_name, | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
stop="### 指示:", | |
): | |
token=chunk.choices[0].delta.content | |
if token is not None: | |
if response.find("### 指示:")>=0 or token.find("### 指示:")>=0: | |
response=response.split("### 指示:")[0] | |
token=token.split("### 指示:")[0] | |
response=response.replace("### 指示:","") | |
token=token.replace("### 指示:","") | |
break | |
response += token | |
#response=response.replace("### 指示:","") | |
yield response | |
# Save conversation after the full response is generated | |
message_index = len(history) | |
save_or_update_conversation(conversation_id,messages, message, response, message_index) | |
def vote(data: gr.LikeData, history, conversation_id): | |
""" | |
Update user feedback (like/dislike) in the local file. | |
""" | |
message_index = data.index[0] | |
liked = data.liked | |
save_or_update_conversation(conversation_id, history,None, None, message_index, liked) | |
def create_conversation_id(): | |
return str(uuid.uuid4()) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
description = """ | |
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開) | |
- 9/16停止中 | |
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。 | |
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。 | |
""" | |
HEADER = description | |
FOOTER = """### 注意 | |
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。 | |
- v1.10""" | |
def run(): | |
conversation_id = gr.State(create_conversation_id) | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
scale=1, | |
show_copy_button=True, | |
height="70%", | |
layout="panel", | |
) | |
with gr.Blocks(fill_height=True) as demo: | |
gr.Markdown(HEADER) | |
chat_interface = gr.ChatInterface( | |
fn=respond, | |
stop_btn="Stop Generation", | |
cache_examples=False, | |
multimodal=False, | |
chatbot=chatbot, | |
additional_inputs_accordion=gr.Accordion( | |
label="Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
conversation_id, | |
gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。", | |
label="System message(試験用: 変えると性能が低下する可能性があります。)", | |
render=False,), | |
gr.Slider( | |
minimum=1, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max tokens", | |
visible=True, | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.3, | |
label="Temperature", | |
visible=True, | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=1.0, | |
label="Top-p", | |
visible=True, | |
render=False, | |
), | |
], | |
analytics_enabled=False, | |
) | |
chatbot.like(vote, [chatbot, conversation_id], None) | |
gr.Markdown(FOOTER) | |
demo.queue(max_size=256, api_open=True) | |
demo.launch(share=True, quiet=True) | |
if __name__ == "__main__": | |
run() | |