karalif commited on
Commit
515f053
·
verified ·
1 Parent(s): aa0da8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -23
app.py CHANGED
@@ -70,16 +70,10 @@ def replace_encoding(tokens):
70
  for token in tokens[1:-1]]
71
 
72
  def predict(text):
73
-
74
- explanations_formality = exp(text, target=0)
75
- explanations_sentiment = exp(text, target=1)
76
- explanations_politeness = exp(text, target=2)
77
- explanations_toxicity = exp(text, target=3)
78
-
79
- #explanations_formality = bench.explain(text, target=0)
80
- #explanations_sentiment = bench.explain(text, target=1)
81
- #explanations_politeness = bench.explain(text, target=2)
82
- #explanations_toxicity = bench.explain(text, target=3)
83
 
84
  greeting_pattern = r"^(Halló|Hæ|Sæl|Góðan dag|Kær kveðja|Daginn|Kvöldið|Ágætis|Elsku)"
85
 
@@ -95,7 +89,6 @@ def predict(text):
95
 
96
  response = f"INPUT:<br>{modified_input}<br><br>MY PREDICTION:<br>{prediction_output}<br>{influential_keywords}<br>{greeting_feedback}"
97
 
98
- # Include influential words in the response
99
  explanation_lists = [explanations_toxicity, explanations_formality, explanations_sentiment, explanations_politeness]
100
  labels = ['Toxicity', 'Formality', 'Sentiment', 'Politeness']
101
 
@@ -109,20 +102,9 @@ def predict(text):
109
  formatted_output = ' '.join([f"{token} ({score})" for token, score in token_score_pairs])
110
  response += f"{label}: {formatted_output}<br>"
111
 
112
- #response += "<br>TOP 2 MOST INFLUENTIAL WORDS FOR EACH LABEL:<br>"
113
- #for i, explanations in enumerate(explanation_lists):
114
- # label = labels[i]
115
- # response += f"{label}:<br>"
116
- # for explanation in explanations:
117
- # if explanation.explainer == 'Partition SHAP':
118
- # sorted_scores = sorted(enumerate(explanation.scores), key=lambda x: abs(x[1]), reverse=True)[:2]
119
- # tokens = replace_encoding(explanation.tokens)
120
- # tokens = [tokens[idx] for idx, _ in sorted_scores]
121
- # formatted_output = ' '.join(tokens)
122
- # response += f"{formatted_output}<br>"
123
-
124
  return response
125
 
 
126
  description_html = """
127
  <center>
128
  <img src='http://www.ru.is/media/HR_logo_vinstri_transparent.png' width='250' height='auto'>
 
70
  for token in tokens[1:-1]]
71
 
72
  def predict(text):
73
+ explanations_formality = [bench.explain(text, target=0)]
74
+ explanations_sentiment = [bench.explain(text, target=1)]
75
+ explanations_politeness = [bench.explain(text, target=2)]
76
+ explanations_toxicity = [bench.explain(text, target=3)]
 
 
 
 
 
 
77
 
78
  greeting_pattern = r"^(Halló|Hæ|Sæl|Góðan dag|Kær kveðja|Daginn|Kvöldið|Ágætis|Elsku)"
79
 
 
89
 
90
  response = f"INPUT:<br>{modified_input}<br><br>MY PREDICTION:<br>{prediction_output}<br>{influential_keywords}<br>{greeting_feedback}"
91
 
 
92
  explanation_lists = [explanations_toxicity, explanations_formality, explanations_sentiment, explanations_politeness]
93
  labels = ['Toxicity', 'Formality', 'Sentiment', 'Politeness']
94
 
 
102
  formatted_output = ' '.join([f"{token} ({score})" for token, score in token_score_pairs])
103
  response += f"{label}: {formatted_output}<br>"
104
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  return response
106
 
107
+
108
  description_html = """
109
  <center>
110
  <img src='http://www.ru.is/media/HR_logo_vinstri_transparent.png' width='250' height='auto'>