Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +93 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
# client = InferenceClient("karanzrk/bert-Causal-QA")
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
generator = pipeline('text-generation', model = 'karanzrk/bert-Causal-QA', tokenizer="bert-base-uncased", max_length = 128)
|
11 |
+
# generator("Hello, I'm a language model", max_length = 30, num_return_sequences=3)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# def respond(
|
16 |
+
# message,
|
17 |
+
# max_tokens,
|
18 |
+
|
19 |
+
# ):
|
20 |
+
# messages = [{"role": "system", "content": system_message}]
|
21 |
+
|
22 |
+
# for val in history:
|
23 |
+
# if val[0]:
|
24 |
+
# messages.append({"role": "user", "content": val[0]})
|
25 |
+
# if val[1]:
|
26 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
27 |
+
|
28 |
+
# messages.append({"role": "user", "content": message})
|
29 |
+
|
30 |
+
# response = ""
|
31 |
+
|
32 |
+
# for message in client.chat_completion(
|
33 |
+
# messages,
|
34 |
+
# max_tokens=max_tokens,
|
35 |
+
# stream=True,
|
36 |
+
# temperature=temperature,
|
37 |
+
# top_p=top_p,
|
38 |
+
# ):
|
39 |
+
# token = message.choices[0].delta.content
|
40 |
+
|
41 |
+
# response += token
|
42 |
+
# yield response
|
43 |
+
|
44 |
+
# """
|
45 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
+
# """
|
47 |
+
# demo = gr.ChatInterface(
|
48 |
+
# respond,
|
49 |
+
# additional_inputs=[
|
50 |
+
# gr.Textbox(value="Question: ", label="System message"),
|
51 |
+
# gr.Slider(minimum=1, maximum=128, value=512, step=1, label="Max new tokens"),
|
52 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
+
# gr.Slider(
|
54 |
+
# minimum=0.1,
|
55 |
+
# maximum=1.0,
|
56 |
+
# value=0.95,
|
57 |
+
# step=0.05,
|
58 |
+
# label="Top-p (nucleus sampling)",
|
59 |
+
# ),
|
60 |
+
# ],
|
61 |
+
# )
|
62 |
+
|
63 |
+
def inference(text):
|
64 |
+
# classifier = pipeline("text-classification", model="karanzrk/essayl0")
|
65 |
+
text = "Question: " + text
|
66 |
+
output = generator(text)
|
67 |
+
answer = output[0]
|
68 |
+
return answer
|
69 |
+
|
70 |
+
# launcher = gr.Interface(
|
71 |
+
# fn=inference,
|
72 |
+
# inputs=gr.Textbox(lines=5, placeholder="Essay here...."),
|
73 |
+
# outputs="text"
|
74 |
+
# )
|
75 |
+
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown(
|
78 |
+
"""
|
79 |
+
# Welcome to bert-demo
|
80 |
+
Ask your question
|
81 |
+
"""
|
82 |
+
)
|
83 |
+
inputs = gr.Textbox(label="Input Box",lines = 5, placeholder="Question: ")
|
84 |
+
button = gr.Button("Ask!")
|
85 |
+
output = gr.Textbox(label="Output Box")
|
86 |
+
button.click(fn=inference, inputs=inputs, outputs = output, api_name="Autograde")
|
87 |
+
|
88 |
+
|
89 |
+
demo.launch()
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
transformers
|
3 |
+
torch
|