karanzrk commited on
Commit
3db5eda
·
1 Parent(s): 6a8a0a8

Add application file

Browse files
Files changed (2) hide show
  1. app.py +93 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ # client = InferenceClient("karanzrk/bert-Causal-QA")
8
+
9
+ from transformers import pipeline
10
+ generator = pipeline('text-generation', model = 'karanzrk/bert-Causal-QA', tokenizer="bert-base-uncased", max_length = 128)
11
+ # generator("Hello, I'm a language model", max_length = 30, num_return_sequences=3)
12
+
13
+
14
+
15
+ # def respond(
16
+ # message,
17
+ # max_tokens,
18
+
19
+ # ):
20
+ # messages = [{"role": "system", "content": system_message}]
21
+
22
+ # for val in history:
23
+ # if val[0]:
24
+ # messages.append({"role": "user", "content": val[0]})
25
+ # if val[1]:
26
+ # messages.append({"role": "assistant", "content": val[1]})
27
+
28
+ # messages.append({"role": "user", "content": message})
29
+
30
+ # response = ""
31
+
32
+ # for message in client.chat_completion(
33
+ # messages,
34
+ # max_tokens=max_tokens,
35
+ # stream=True,
36
+ # temperature=temperature,
37
+ # top_p=top_p,
38
+ # ):
39
+ # token = message.choices[0].delta.content
40
+
41
+ # response += token
42
+ # yield response
43
+
44
+ # """
45
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
+ # """
47
+ # demo = gr.ChatInterface(
48
+ # respond,
49
+ # additional_inputs=[
50
+ # gr.Textbox(value="Question: ", label="System message"),
51
+ # gr.Slider(minimum=1, maximum=128, value=512, step=1, label="Max new tokens"),
52
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ # gr.Slider(
54
+ # minimum=0.1,
55
+ # maximum=1.0,
56
+ # value=0.95,
57
+ # step=0.05,
58
+ # label="Top-p (nucleus sampling)",
59
+ # ),
60
+ # ],
61
+ # )
62
+
63
+ def inference(text):
64
+ # classifier = pipeline("text-classification", model="karanzrk/essayl0")
65
+ text = "Question: " + text
66
+ output = generator(text)
67
+ answer = output[0]
68
+ return answer
69
+
70
+ # launcher = gr.Interface(
71
+ # fn=inference,
72
+ # inputs=gr.Textbox(lines=5, placeholder="Essay here...."),
73
+ # outputs="text"
74
+ # )
75
+
76
+ with gr.Blocks() as demo:
77
+ gr.Markdown(
78
+ """
79
+ # Welcome to bert-demo
80
+ Ask your question
81
+ """
82
+ )
83
+ inputs = gr.Textbox(label="Input Box",lines = 5, placeholder="Question: ")
84
+ button = gr.Button("Ask!")
85
+ output = gr.Textbox(label="Output Box")
86
+ button.click(fn=inference, inputs=inputs, outputs = output, api_name="Autograde")
87
+
88
+
89
+ demo.launch()
90
+
91
+
92
+ if __name__ == "__main__":
93
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ transformers
3
+ torch