Spaces:
Sleeping
Sleeping
Commit
·
3114f5a
1
Parent(s):
7a6c3fd
メニューを変更
Browse files- create_object.py +16 -65
create_object.py
CHANGED
@@ -2,58 +2,22 @@ import plotly.graph_objects as go
|
|
2 |
import plotly.express as px
|
3 |
|
4 |
# 分析メニュー
|
5 |
-
analysis_menu_list = ["
|
6 |
|
7 |
# 分析メニューごとのSQL
|
8 |
def create_sql(analysis_menu, country, start_date, end_date):
|
9 |
-
if analysis_menu == "
|
10 |
sql = f"""
|
11 |
-
WITH
|
12 |
-
t_base AS(
|
13 |
-
-- 商品コードごとの売上(単価×個数)の合計値を算出
|
14 |
-
-- 期間を、2011年1~6月に絞る
|
15 |
-
SELECT
|
16 |
-
StockCode, Description,
|
17 |
-
SUM(UnitPrice * Quantity) AS SalesTotal
|
18 |
-
FROM df
|
19 |
-
WHERE CAST(InvoiceDate AS DATE) BETWEEN DATETIME '{start_date}' AND DATETIME '{end_date}'
|
20 |
-
AND {country}
|
21 |
-
GROUP BY StockCode, Description
|
22 |
-
),
|
23 |
-
t_standard AS(
|
24 |
-
-- 全体の売上のうち、70%を占める売上額・90%を占める売上額を算出
|
25 |
-
SELECT
|
26 |
-
SUM(SalesTotal) AS Sum_SalesTotal,
|
27 |
-
FROM t_base
|
28 |
-
),
|
29 |
-
t_cumulative AS(
|
30 |
-
-- 売上を降順(高い順)でソートし、先頭からの累計売上額を算出
|
31 |
-
SELECT
|
32 |
-
StockCode,
|
33 |
-
Description,
|
34 |
-
SalesTotal,
|
35 |
-
SUM(SalesTotal) OVER (ORDER BY SalesTotal DESC) AS SalesCumulative
|
36 |
-
FROM t_base
|
37 |
-
ORDER BY SalesTotal DESC
|
38 |
-
)
|
39 |
-
|
40 |
SELECT
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
ELSE 'C'
|
51 |
-
END AS SalesRank
|
52 |
-
|
53 |
-
FROM t_cumulative
|
54 |
-
FULL OUTER JOIN t_standard
|
55 |
-
ON TRUE
|
56 |
-
ORDER BY SalesTotal desc
|
57 |
"""
|
58 |
|
59 |
elif analysis_menu == "バスケット分析":
|
@@ -128,33 +92,20 @@ def create_sql(analysis_menu, country, start_date, end_date):
|
|
128 |
Description_B in (SELECT Description FROM t_purchaser ORDER BY Num_of_Purchaser DESC LIMIT 10)
|
129 |
"""
|
130 |
|
131 |
-
elif analysis_menu == "時系列分析":
|
132 |
-
sql = f"""
|
133 |
-
SELECT
|
134 |
-
CAST(InvoiceDate AS DATE) AS YearMonthDate,
|
135 |
-
COUNT(DISTINCT CustomerID) AS Num_of_Purchaser,
|
136 |
-
SUM(Quantity) AS Total_of_Amount,
|
137 |
-
SUM(UnitPrice * Quantity) AS SalesTotal
|
138 |
-
FROM df
|
139 |
-
WHERE CAST(InvoiceDate AS DATE) BETWEEN DATETIME '{start_date}' AND DATETIME '{end_date}'
|
140 |
-
AND {country}
|
141 |
-
GROUP BY YearMonthDate
|
142 |
-
ORDER BY YearMonthDate
|
143 |
-
"""
|
144 |
-
|
145 |
return sql
|
146 |
|
147 |
|
148 |
# 分析メニューごとのグラフ
|
149 |
def create_graph(analysis_menu, df):
|
150 |
-
if analysis_menu == "
|
|
|
|
|
|
|
|
|
151 |
# ヒートマップ
|
152 |
df = df.sort_values(["Description_A","Description_B"], ascending=[True, False]).reset_index()
|
153 |
fig = go.Figure([go.Heatmap(z=df.CombinedSalesRate,
|
154 |
x=df.Description_A.values,
|
155 |
y=df.Description_B.values)])
|
156 |
|
157 |
-
elif analysis_menu == "時系列分析":
|
158 |
-
# 折れ線グラフ
|
159 |
-
fig = px.line(df, x='YearMonthDate', y='Total_of_Amount')
|
160 |
return fig
|
|
|
2 |
import plotly.express as px
|
3 |
|
4 |
# 分析メニュー
|
5 |
+
analysis_menu_list = ["時系列分析","バスケット分析"]
|
6 |
|
7 |
# 分析メニューごとのSQL
|
8 |
def create_sql(analysis_menu, country, start_date, end_date):
|
9 |
+
if analysis_menu == "時系列分析":
|
10 |
sql = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
SELECT
|
12 |
+
CAST(InvoiceDate AS DATE) AS YearMonthDate,
|
13 |
+
COUNT(DISTINCT CustomerID) AS Num_of_Purchaser,
|
14 |
+
SUM(Quantity) AS Total_of_Amount,
|
15 |
+
SUM(UnitPrice * Quantity) AS SalesTotal
|
16 |
+
FROM df
|
17 |
+
WHERE CAST(InvoiceDate AS DATE) BETWEEN DATETIME '{start_date}' AND DATETIME '{end_date}'
|
18 |
+
AND {country}
|
19 |
+
GROUP BY YearMonthDate
|
20 |
+
ORDER BY YearMonthDate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"""
|
22 |
|
23 |
elif analysis_menu == "バスケット分析":
|
|
|
92 |
Description_B in (SELECT Description FROM t_purchaser ORDER BY Num_of_Purchaser DESC LIMIT 10)
|
93 |
"""
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return sql
|
96 |
|
97 |
|
98 |
# 分析メニューごとのグラフ
|
99 |
def create_graph(analysis_menu, df):
|
100 |
+
if analysis_menu == "時系列分析":
|
101 |
+
# 折れ線グラフ
|
102 |
+
fig = px.line(df, x='YearMonthDate', y='Total_of_Amount')
|
103 |
+
|
104 |
+
elif analysis_menu == "バスケット分析":
|
105 |
# ヒートマップ
|
106 |
df = df.sort_values(["Description_A","Description_B"], ascending=[True, False]).reset_index()
|
107 |
fig = go.Figure([go.Heatmap(z=df.CombinedSalesRate,
|
108 |
x=df.Description_A.values,
|
109 |
y=df.Description_B.values)])
|
110 |
|
|
|
|
|
|
|
111 |
return fig
|