pax-dare-lab's picture
Use GPT2 Model
fb119fe
import streamlit as st
# from transformers import T5Tokenizer,AutoModelForCausalLM
model_name = "rinna/japanese-gpt2-small"
# tokenizer = T5Tokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the pre-trained GPT-2 model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# App title
st.set_page_config(page_title="ChatBot")
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Function for generating LLM response
# def generate_response(prompt_input):
# input = tokenizer.encode(prompt_input, return_tensors="pt")
# output = model.generate(input, do_sample=True, max_length=30, num_return_sequences=1)
# return tokenizer.batch_decode(output)
def generate_response(prompt, max_length=50):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate response
with torch.no_grad():
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, pad_token_id=50256)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)