Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- README.md +7 -7
- app.py +138 -0
- packages.txt +2 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: 🗣️Live ASR Speech Recognition Gradio🧠💾
|
3 |
+
emoji: 2-Live🗣️
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.5
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import librosa
|
5 |
+
import soundfile
|
6 |
+
import nemo.collections.asr as nemo_asr
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
import uuid
|
10 |
+
|
11 |
+
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
|
12 |
+
import torch
|
13 |
+
|
14 |
+
# PersistDataset -----
|
15 |
+
import os
|
16 |
+
import csv
|
17 |
+
import gradio as gr
|
18 |
+
from gradio import inputs, outputs
|
19 |
+
import huggingface_hub
|
20 |
+
from huggingface_hub import Repository, hf_hub_download, upload_file
|
21 |
+
from datetime import datetime
|
22 |
+
|
23 |
+
# ---------------------------------------------
|
24 |
+
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
|
25 |
+
# This should allow you to save your results to your own Dataset hosted on HF.
|
26 |
+
|
27 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/ASRLive.csv"
|
28 |
+
DATASET_REPO_ID = "awacke1/ASRLive.csv"
|
29 |
+
DATA_FILENAME = "ASRLive.csv"
|
30 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
31 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
32 |
+
|
33 |
+
PersistToDataset = False
|
34 |
+
#PersistToDataset = True # uncomment to save inference output to ASRLive.csv dataset
|
35 |
+
|
36 |
+
if PersistToDataset:
|
37 |
+
try:
|
38 |
+
hf_hub_download(
|
39 |
+
repo_id=DATASET_REPO_ID,
|
40 |
+
filename=DATA_FILENAME,
|
41 |
+
cache_dir=DATA_DIRNAME,
|
42 |
+
force_filename=DATA_FILENAME
|
43 |
+
)
|
44 |
+
except:
|
45 |
+
print("file not found")
|
46 |
+
repo = Repository(
|
47 |
+
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
48 |
+
)
|
49 |
+
|
50 |
+
def store_message(name: str, message: str):
|
51 |
+
if name and message:
|
52 |
+
with open(DATA_FILE, "a") as csvfile:
|
53 |
+
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
|
54 |
+
writer.writerow(
|
55 |
+
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
|
56 |
+
)
|
57 |
+
# uncomment line below to begin saving -
|
58 |
+
commit_url = repo.push_to_hub()
|
59 |
+
ret = ""
|
60 |
+
with open(DATA_FILE, "r") as csvfile:
|
61 |
+
reader = csv.DictReader(csvfile)
|
62 |
+
|
63 |
+
for row in reader:
|
64 |
+
ret += row
|
65 |
+
ret += "\r\n"
|
66 |
+
return ret
|
67 |
+
|
68 |
+
# main -------------------------
|
69 |
+
mname = "facebook/blenderbot-400M-distill"
|
70 |
+
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
|
71 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
|
72 |
+
|
73 |
+
def take_last_tokens(inputs, note_history, history):
|
74 |
+
filterTokenCount = 128 # filter last 128 tokens
|
75 |
+
if inputs['input_ids'].shape[1] > filterTokenCount:
|
76 |
+
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-filterTokenCount:].tolist()])
|
77 |
+
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-filterTokenCount:].tolist()])
|
78 |
+
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
|
79 |
+
history = history[1:]
|
80 |
+
return inputs, note_history, history
|
81 |
+
|
82 |
+
def add_note_to_history(note, note_history):
|
83 |
+
note_history.append(note)
|
84 |
+
note_history = '</s> <s>'.join(note_history)
|
85 |
+
return [note_history]
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
SAMPLE_RATE = 16000
|
90 |
+
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
91 |
+
model.change_decoding_strategy(None)
|
92 |
+
model.eval()
|
93 |
+
|
94 |
+
def process_audio_file(file):
|
95 |
+
data, sr = librosa.load(file)
|
96 |
+
if sr != SAMPLE_RATE:
|
97 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
98 |
+
data = librosa.to_mono(data)
|
99 |
+
return data
|
100 |
+
|
101 |
+
|
102 |
+
def transcribe(audio, state = ""):
|
103 |
+
if state is None:
|
104 |
+
state = ""
|
105 |
+
audio_data = process_audio_file(audio)
|
106 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
107 |
+
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
108 |
+
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
109 |
+
transcriptions = model.transcribe([audio_path])
|
110 |
+
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
111 |
+
transcriptions = transcriptions[0]
|
112 |
+
transcriptions = transcriptions[0]
|
113 |
+
|
114 |
+
if PersistToDataset:
|
115 |
+
ret = store_message(transcriptions, state) # Save to dataset - uncomment to store into a dataset - hint you will need your HF_TOKEN
|
116 |
+
state = state + transcriptions + " " + ret
|
117 |
+
else:
|
118 |
+
state = state + transcriptions
|
119 |
+
return state, state
|
120 |
+
|
121 |
+
gr.Interface(
|
122 |
+
fn=transcribe,
|
123 |
+
inputs=[
|
124 |
+
gr.Audio(source="microphone", type='filepath', streaming=True),
|
125 |
+
"state",
|
126 |
+
],
|
127 |
+
outputs=[
|
128 |
+
"textbox",
|
129 |
+
"state"
|
130 |
+
],
|
131 |
+
layout="horizontal",
|
132 |
+
theme="huggingface",
|
133 |
+
title="🗣️ASR-Gradio-Live🧠💾",
|
134 |
+
description=f"Live Automatic Speech Recognition (ASR).",
|
135 |
+
allow_flagging='never',
|
136 |
+
live=True,
|
137 |
+
article=f"Result💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
|
138 |
+
).launch(debug=True)
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsndfile1
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nemo_toolkit[asr]
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
Werkzeug
|
6 |
+
huggingface_hub
|
7 |
+
Pillow
|