File size: 5,137 Bytes
1a1ee1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Model validation metrics

import matplotlib.pyplot as plt
import numpy as np


def fitness(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)


def fitness_p(x):
    # Model fitness as a weighted combination of metrics
    w = [1.0, 0.0, 0.0, 0.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)


def fitness_r(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 1.0, 0.0, 0.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)


def fitness_ap50(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 1.0, 0.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)


def fitness_ap(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.0, 1.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (x[:, :4] * w).sum(1)


def fitness_f(x):
    # Model fitness as a weighted combination of metrics
    #w = [0.0, 0.0, 0.0, 1.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return ((x[:, 0]*x[:, 1])/(x[:, 0]+x[:, 1]))


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at mAP@0.5
        fname:  Plot filename
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(target_cls)

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    pr_score = 0.1  # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
    s = [unique_classes.shape[0], tp.shape[1]]  # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
    ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = (target_cls == c).sum()  # number of labels
        n_p = i.sum()  # number of predictions

        if n_p == 0 or n_l == 0:
            continue
        else:
            # Accumulate FPs and TPs
            fpc = (1 - tp[i]).cumsum(0)
            tpc = tp[i].cumsum(0)

            # Recall
            recall = tpc / (n_l + 1e-16)  # recall curve
            r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0])  # r at pr_score, negative x, xp because xp decreases

            # Precision
            precision = tpc / (tpc + fpc)  # precision curve
            p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0])  # p at pr_score

            # AP from recall-precision curve
            for j in range(tp.shape[1]):
                ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
                if j == 0:
                    py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5

    # Compute F1 score (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + 1e-16)

    if plot:
        py = np.stack(py, axis=1)
        fig, ax = plt.subplots(1, 1, figsize=(5, 5))
        ax.plot(px, py, linewidth=0.5, color='grey')  # plot(recall, precision)
        ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
        ax.set_xlabel('Recall')
        ax.set_ylabel('Precision')
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        plt.legend()
        fig.tight_layout()
        fig.savefig(fname, dpi=200)

    return p, r, ap, f1, unique_classes.astype('int32')


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rbgirshick/py-faster-rcnn.
    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec