Spaces:
Runtime error
Runtime error
File size: 18,475 Bytes
1a1ee1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import torch.nn.functional as F
from utils.general import *
import torch
from torch import nn
try:
from mish_cuda import MishCuda as Mish
except:
class Mish(nn.Module): # https://github.com/digantamisra98/Mish
def forward(self, x):
return x * F.softplus(x).tanh()
try:
from pytorch_wavelets import DWTForward, DWTInverse
class DWT(nn.Module):
def __init__(self):
super(DWT, self).__init__()
self.xfm = DWTForward(J=1, wave='db1', mode='zero')
def forward(self, x):
b,c,w,h = x.shape
yl, yh = self.xfm(x)
return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1)
except: # using Reorg instead
class DWT(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
class Reorg(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
def make_divisible(v, divisor):
# Function ensures all layers have a channel number that is divisible by 8
# https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
return math.ceil(v / divisor) * divisor
class Flatten(nn.Module):
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
def forward(self, x):
return x.view(x.size(0), -1)
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class FeatureConcat(nn.Module):
def __init__(self, layers):
super(FeatureConcat, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]]
class FeatureConcat2(nn.Module):
def __init__(self, layers):
super(FeatureConcat2, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach()], 1)
class FeatureConcat3(nn.Module):
def __init__(self, layers):
super(FeatureConcat3, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach(), outputs[self.layers[2]].detach()], 1)
class FeatureConcat_l(nn.Module):
def __init__(self, layers):
super(FeatureConcat_l, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[i][:,:outputs[i].shape[1]//2,:,:] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]][:,:outputs[self.layers[0]].shape[1]//2,:,:]
class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers, weight=False):
super(WeightedFeatureFusion, self).__init__()
self.layers = layers # layer indices
self.weight = weight # apply weights boolean
self.n = len(layers) + 1 # number of layers
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights
def forward(self, x, outputs):
# Weights
if self.weight:
w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1)
x = x * w[0]
# Fusion
nx = x.shape[1] # input channels
for i in range(self.n - 1):
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add
na = a.shape[1] # feature channels
# Adjust channels
if nx == na: # same shape
x = x + a
elif nx > na: # slice input
x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a
else: # slice feature
x = x + a[:, :nx]
return x
class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'):
super(MixConv2d, self).__init__()
groups = len(k)
if method == 'equal_ch': # equal channels per group
i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices
ch = [(i == g).sum() for g in range(groups)]
else: # 'equal_params': equal parameter count per group
b = [out_ch] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b
self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch,
out_channels=ch[g],
kernel_size=k[g],
stride=stride,
padding=k[g] // 2, # 'same' pad
dilation=dilation,
bias=bias) for g in range(groups)])
def forward(self, x):
return torch.cat([m(x) for m in self.m], 1)
# Activation functions below -------------------------------------------------------------------------------------------
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x) # sigmoid(ctx)
return grad_output * (sx * (1 + x * (1 - sx)))
class MishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class MemoryEfficientMish(nn.Module):
def forward(self, x):
return MishImplementation.apply(x)
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
def forward(self, x):
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
class DeformConv2d(nn.Module):
def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False):
"""
Args:
modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2).
"""
super(DeformConv2d, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.zero_padding = nn.ZeroPad2d(padding)
self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias)
self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
nn.init.constant_(self.p_conv.weight, 0)
self.p_conv.register_backward_hook(self._set_lr)
self.modulation = modulation
if modulation:
self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
nn.init.constant_(self.m_conv.weight, 0)
self.m_conv.register_backward_hook(self._set_lr)
@staticmethod
def _set_lr(module, grad_input, grad_output):
grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
def forward(self, x):
offset = self.p_conv(x)
if self.modulation:
m = torch.sigmoid(self.m_conv(x))
dtype = offset.data.type()
ks = self.kernel_size
N = offset.size(1) // 2
if self.padding:
x = self.zero_padding(x)
# (b, 2N, h, w)
p = self._get_p(offset, dtype)
# (b, h, w, 2N)
p = p.contiguous().permute(0, 2, 3, 1)
q_lt = p.detach().floor()
q_rb = q_lt + 1
q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long()
q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long()
q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
# clip p
p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1)
# bilinear kernel (b, h, w, N)
g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
# (b, c, h, w, N)
x_q_lt = self._get_x_q(x, q_lt, N)
x_q_rb = self._get_x_q(x, q_rb, N)
x_q_lb = self._get_x_q(x, q_lb, N)
x_q_rt = self._get_x_q(x, q_rt, N)
# (b, c, h, w, N)
x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
g_rb.unsqueeze(dim=1) * x_q_rb + \
g_lb.unsqueeze(dim=1) * x_q_lb + \
g_rt.unsqueeze(dim=1) * x_q_rt
# modulation
if self.modulation:
m = m.contiguous().permute(0, 2, 3, 1)
m = m.unsqueeze(dim=1)
m = torch.cat([m for _ in range(x_offset.size(1))], dim=1)
x_offset *= m
x_offset = self._reshape_x_offset(x_offset, ks)
out = self.conv(x_offset)
return out
def _get_p_n(self, N, dtype):
p_n_x, p_n_y = torch.meshgrid(
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1),
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1))
# (2N, 1)
p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0)
p_n = p_n.view(1, 2*N, 1, 1).type(dtype)
return p_n
def _get_p_0(self, h, w, N, dtype):
p_0_x, p_0_y = torch.meshgrid(
torch.arange(1, h*self.stride+1, self.stride),
torch.arange(1, w*self.stride+1, self.stride))
p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
return p_0
def _get_p(self, offset, dtype):
N, h, w = offset.size(1)//2, offset.size(2), offset.size(3)
# (1, 2N, 1, 1)
p_n = self._get_p_n(N, dtype)
# (1, 2N, h, w)
p_0 = self._get_p_0(h, w, N, dtype)
p = p_0 + p_n + offset
return p
def _get_x_q(self, x, q, N):
b, h, w, _ = q.size()
padded_w = x.size(3)
c = x.size(1)
# (b, c, h*w)
x = x.contiguous().view(b, c, -1)
# (b, h, w, N)
index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y
# (b, c, h*w*N)
index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
return x_offset
@staticmethod
def _reshape_x_offset(x_offset, ks):
b, c, h, w, N = x_offset.size()
x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1)
x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks)
return x_offset
class GAP(nn.Module):
def __init__(self):
super(GAP, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
#b, c, _, _ = x.size()
return self.avg_pool(x)#.view(b, c)
class Silence(nn.Module):
def __init__(self):
super(Silence, self).__init__()
def forward(self, x):
return x
class ScaleChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ScaleChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return x.expand_as(a) * a
class ShiftChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ShiftChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) + x
class ShiftChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ShiftChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) + x
class ControlChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ControlChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) * x
class ControlChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ControlChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) * x
class AlternateChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(AlternateChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return torch.cat([a.expand_as(x), x], dim=1)
class AlternateChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(AlternateChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return torch.cat([a.expand_as(x), x], dim=1)
class SelectChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(SelectChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.sigmoid().expand_as(x) * x
class SelectChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(SelectChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.sigmoid().expand_as(x) * x
class ScaleSpatial(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ScaleSpatial, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return x * a
class ImplicitA(nn.Module):
def __init__(self, channel):
super(ImplicitA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class ImplicitC(nn.Module):
def __init__(self, channel):
super(ImplicitC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class ImplicitM(nn.Module):
def __init__(self, channel):
super(ImplicitM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit
class Implicit2DA(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class Implicit2DC(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class Implicit2DM(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit
|