File size: 11,258 Bytes
799a750
 
1a1ee1f
799a750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1ee1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: YOLOR
emoji: πŸš€
colorFrom: gray
colorTo: purple
sdk: gradio
app_file: app.py
pinned: false
---

# Configuration

`title`: _string_  
Display title for the Space

`emoji`: _string_  
Space emoji (emoji-only character allowed)

`colorFrom`: _string_  
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)

`colorTo`: _string_  
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)

`sdk`: _string_  
Can be either `gradio` or `streamlit`

`sdk_version` : _string_  
Only applicable for `streamlit` SDK.  
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.

`app_file`: _string_  
Path to your main application file (which contains either `gradio` or `streamlit` Python code).  
Path is relative to the root of the repository.

`pinned`: _boolean_  
Whether the Space stays on top of your list.


# YOLOR
implementation of paper - [You Only Learn One Representation: Unified Network for Multiple Tasks](https://arxiv.org/abs/2105.04206)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/you-only-learn-one-representation-unified/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=you-only-learn-one-representation-unified)

![Unified Network](https://github.com/WongKinYiu/yolor/blob/main/figure/unifued_network.png)

<img src="https://github.com/WongKinYiu/yolor/blob/main/figure/performance.png" height="480">

To get the results on the table, please use [this branch](https://github.com/WongKinYiu/yolor/tree/paper).

| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch1 throughput | batch32 inference |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| **YOLOR-P6** | 1280 | **54.1%** | **71.8%** | **59.3%** | 49 *fps* | 8.3 *ms* |
| **YOLOR-W6** | 1280 | **55.5%** | **73.2%** | **60.6%** | 47 *fps* | 10.7 *ms* |
| **YOLOR-E6** | 1280 | **56.4%** | **74.1%** | **61.6%** | 37 *fps* | 17.1 *ms* |
| **YOLOR-D6** | 1280 | **57.3%** | **75.0%** | **62.7%** | 30 *fps* | 21.8 *ms* |
| **YOLOR-D6*** | 1280 | **57.8%** | **75.5%** | **63.3%** | 30 *fps* | 21.8 *ms* |
|  |  |  |  |  |  |  |
| **YOLOv4-P5** | 896 | **51.8%** | **70.3%** | **56.6%** | 41 *fps* | - |
| **YOLOv4-P6** | 1280 | **54.5%** | **72.6%** | **59.8%** | 30 *fps* | - |
| **YOLOv4-P7** | 1536 | **55.5%** | **73.4%** | **60.8%** | 16 *fps* | - |
|  |  |  |  |  |  |  |

To reproduce the inference speed, please see [darknet](https://github.com/WongKinYiu/yolor/tree/main/darknet).

| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | AP<sub>S</sub><sup>val</sup> | AP<sub>M</sub><sup>val</sup> | AP<sub>L</sub><sup>val</sup> | batch1 throughput |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | 
| [**YOLOv4-CSP**](/cfg/yolov4_csp.cfg) | 640 | **49.1%** | **67.7%** | **53.8%** | **32.1%** | **54.4%** | **63.2%** | 76 *fps* |
| [**YOLOR-CSP**](/cfg/yolor_csp.cfg) | 640 | **49.2%** | **67.6%** | **53.7%** | **32.9%** | **54.4%** | **63.0%** | [weights](https://drive.google.com/file/d/1ZEqGy4kmZyD-Cj3tEFJcLSZenZBDGiyg/view?usp=sharing) |
| [**YOLOR-CSP***](/cfg/yolor_csp.cfg) | 640 | **50.0%** | **68.7%** | **54.3%** | **34.2%** | **55.1%** | **64.3%** | [weights](https://drive.google.com/file/d/1OJKgIasELZYxkIjFoiqyn555bcmixUP2/view?usp=sharing) |
|  |  |  |  |  |  |  |
| [**YOLOv4-CSP-X**](/cfg/yolov4_csp_x.cfg) | 640 | **50.9%** | **69.3%** | **55.4%** | **35.3%** | **55.8%** | **64.8%** | 53 *fps* |
| [**YOLOR-CSP-X**](/cfg/yolor_csp_x.cfg) | 640 | **51.1%** | **69.6%** | **55.7%** | **35.7%** | **56.0%** | **65.2%** | [weights](https://drive.google.com/file/d/1L29rfIPNH1n910qQClGftknWpTBgAv6c/view?usp=sharing) |
| [**YOLOR-CSP-X***](/cfg/yolor_csp_x.cfg) | 640 | **51.5%** | **69.9%** | **56.1%** | **35.8%** | **56.8%** | **66.1%** | [weights](https://drive.google.com/file/d/1NbMG3ivuBQ4S8kEhFJ0FIqOQXevGje_w/view?usp=sharing) |
|  |  |  |  |  |  |  |

Developing...

| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | AP<sub>S</sub><sup>test</sup> | AP<sub>M</sub><sup>test</sup> | AP<sub>L</sub><sup>test</sup> |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| **YOLOR-CSP** | 640 | **51.1%** | **69.6%** | **55.7%** | **31.7%** | **55.3%** | **64.7%** |
| **YOLOR-CSP-X** | 640 | **53.0%** | **71.4%** | **57.9%** | **33.7%** | **57.1%** | **66.8%** |

Train from scratch for 300 epochs...

| Model | Info | Test Size | AP |
| :-- | :-- | :-: | :-: |
| **YOLOR-CSP** | [evolution](https://github.com/ultralytics/yolov3/issues/392) | 640 | **48.0%** |
| **YOLOR-CSP** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) | 640 | **50.0%** |
| **YOLOR-CSP** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) + [simOTA](https://arxiv.org/abs/2107.08430) | 640 | **51.1%** |
|  |  |  |  |
| **YOLOR-CSP-X** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) | 640 | **51.5%** |
| **YOLOR-CSP-X** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) + [simOTA](https://arxiv.org/abs/2107.08430) | 640 | **53.0%** |

## Installation

Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>

```
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:20.11-py3

# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx

# pip install required packages
pip install seaborn thop

# install mish-cuda if you want to use mish activation
# https://github.com/thomasbrandon/mish-cuda
# https://github.com/JunnYu/mish-cuda
cd /
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install

# install pytorch_wavelets if you want to use dwt down-sampling module
# https://github.com/fbcotter/pytorch_wavelets
cd /
git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

# go to code folder
cd /yolor
```

</details>

Colab environment
<details><summary> <b>Expand</b> </summary>
  
```
git clone https://github.com/WongKinYiu/yolor
cd yolor

# pip install required packages
pip install -qr requirements.txt

# install mish-cuda if you want to use mish activation
# https://github.com/thomasbrandon/mish-cuda
# https://github.com/JunnYu/mish-cuda
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install
cd ..

# install pytorch_wavelets if you want to use dwt down-sampling module
# https://github.com/fbcotter/pytorch_wavelets
git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .
cd ..
```

</details>

Prepare COCO dataset
<details><summary> <b>Expand</b> </summary>

```
cd /yolor
bash scripts/get_coco.sh
```

</details>

Prepare pretrained weight
<details><summary> <b>Expand</b> </summary>

```
cd /yolor
bash scripts/get_pretrain.sh
```

</details>

## Testing

[`yolor_p6.pt`](https://drive.google.com/file/d/1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76/view?usp=sharing)

```
python test.py --data data/coco.yaml --img 1280 --batch 32 --conf 0.001 --iou 0.65 --device 0 --cfg cfg/yolor_p6.cfg --weights yolor_p6.pt --name yolor_p6_val
```

You will get the results:

```
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.52510
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.70718
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.57520
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.37058
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.56878
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66102
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.39181
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.65229
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.71441
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.57755
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.75337
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.84013
```

## Training

Single GPU training:

```
python train.py --batch-size 8 --img 1280 1280 --data coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0 --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
```

Multiple GPU training:

```
python -m torch.distributed.launch --nproc_per_node 2 --master_port 9527 train.py --batch-size 16 --img 1280 1280 --data coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0,1 --sync-bn --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
```

Training schedule in the paper:

```
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 tune.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights 'runs/train/yolor_p6/weights/last_298.pt' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6-tune --hyp hyp.finetune.1280.yaml --epochs 450
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights 'runs/train/yolor_p6-tune/weights/epoch_424.pt' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6-fine --hyp hyp.finetune.1280.yaml --epochs 450
```

## Inference

[`yolor_p6.pt`](https://drive.google.com/file/d/1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76/view?usp=sharing)

```
python detect.py --source inference/images/horses.jpg --cfg cfg/yolor_p6.cfg --weights yolor_p6.pt --conf 0.25 --img-size 1280 --device 0
```

You will get the results:

![horses](https://github.com/WongKinYiu/yolor/blob/main/inference/output/horses.jpg)

## Citation

```
@article{wang2021you,
  title={You Only Learn One Representation: Unified Network for Multiple Tasks},
  author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2105.04206},
  year={2021}
}
```

## Acknowledgements

<details><summary> <b>Expand</b> </summary>

* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
* [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
* [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
* [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)

</details>