Spaces:
Runtime error
Runtime error
import argparse | |
import glob | |
import json | |
import os | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import yaml | |
from tqdm import tqdm | |
from utils.google_utils import attempt_load | |
from utils.datasets import create_dataloader | |
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \ | |
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, clip_coords, set_logging, increment_path | |
from utils.loss import compute_loss | |
from utils.metrics import ap_per_class | |
from utils.plots import plot_images, output_to_target | |
from utils.torch_utils import select_device, time_synchronized | |
from models.models import * | |
def load_classes(path): | |
# Loads *.names file at 'path' | |
with open(path, 'r') as f: | |
names = f.read().split('\n') | |
return list(filter(None, names)) # filter removes empty strings (such as last line) | |
def test(data, | |
weights=None, | |
batch_size=16, | |
imgsz=640, | |
conf_thres=0.001, | |
iou_thres=0.6, # for NMS | |
save_json=False, | |
single_cls=False, | |
augment=False, | |
verbose=False, | |
model=None, | |
dataloader=None, | |
save_dir=Path(''), # for saving images | |
save_txt=False, # for auto-labelling | |
save_conf=False, | |
plots=True, | |
log_imgs=0): # number of logged images | |
# Initialize/load model and set device | |
training = model is not None | |
if training: # called by train.py | |
device = next(model.parameters()).device # get model device | |
else: # called directly | |
set_logging() | |
device = select_device(opt.device, batch_size=batch_size) | |
save_txt = opt.save_txt # save *.txt labels | |
# Directories | |
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run | |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
model = Darknet(opt.cfg).to(device) | |
# load model | |
try: | |
ckpt = torch.load(weights[0], map_location=device) # load checkpoint | |
ckpt['model'] = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()} | |
model.load_state_dict(ckpt['model'], strict=False) | |
except: | |
load_darknet_weights(model, weights[0]) | |
imgsz = check_img_size(imgsz, s=64) # check img_size | |
# Half | |
half = device.type != 'cpu' # half precision only supported on CUDA | |
if half: | |
model.half() | |
# Configure | |
model.eval() | |
is_coco = data.endswith('coco.yaml') # is COCO dataset | |
with open(data) as f: | |
data = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
check_dataset(data) # check | |
nc = 1 if single_cls else int(data['nc']) # number of classes | |
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 | |
niou = iouv.numel() | |
# Logging | |
log_imgs, wandb = min(log_imgs, 100), None # ceil | |
try: | |
import wandb # Weights & Biases | |
except ImportError: | |
log_imgs = 0 | |
# Dataloader | |
if not training: | |
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | |
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once | |
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images | |
dataloader = create_dataloader(path, imgsz, batch_size, 64, opt, pad=0.5, rect=True)[0] | |
seen = 0 | |
try: | |
names = model.names if hasattr(model, 'names') else model.module.names | |
except: | |
names = load_classes(opt.names) | |
coco91class = coco80_to_coco91_class() | |
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') | |
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. | |
loss = torch.zeros(3, device=device) | |
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] | |
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): | |
img = img.to(device, non_blocking=True) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
targets = targets.to(device) | |
nb, _, height, width = img.shape # batch size, channels, height, width | |
whwh = torch.Tensor([width, height, width, height]).to(device) | |
# Disable gradients | |
with torch.no_grad(): | |
# Run model | |
t = time_synchronized() | |
inf_out, train_out = model(img, augment=augment) # inference and training outputs | |
t0 += time_synchronized() - t | |
# Compute loss | |
if training: # if model has loss hyperparameters | |
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls | |
# Run NMS | |
t = time_synchronized() | |
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres) | |
t1 += time_synchronized() - t | |
# Statistics per image | |
for si, pred in enumerate(output): | |
labels = targets[targets[:, 0] == si, 1:] | |
nl = len(labels) | |
tcls = labels[:, 0].tolist() if nl else [] # target class | |
seen += 1 | |
if len(pred) == 0: | |
if nl: | |
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) | |
continue | |
# Append to text file | |
path = Path(paths[si]) | |
if save_txt: | |
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh | |
x = pred.clone() | |
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original | |
for *xyxy, conf, cls in x: | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: | |
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |
# W&B logging | |
if plots and len(wandb_images) < log_imgs: | |
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, | |
"class_id": int(cls), | |
"box_caption": "%s %.3f" % (names[cls], conf), | |
"scores": {"class_score": conf}, | |
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] | |
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} | |
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) | |
# Clip boxes to image bounds | |
clip_coords(pred, (height, width)) | |
# Append to pycocotools JSON dictionary | |
if save_json: | |
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... | |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
box = pred[:, :4].clone() # xyxy | |
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape | |
box = xyxy2xywh(box) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
for p, b in zip(pred.tolist(), box.tolist()): | |
jdict.append({'image_id': image_id, | |
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), | |
'bbox': [round(x, 3) for x in b], | |
'score': round(p[4], 5)}) | |
# Assign all predictions as incorrect | |
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) | |
if nl: | |
detected = [] # target indices | |
tcls_tensor = labels[:, 0] | |
# target boxes | |
tbox = xywh2xyxy(labels[:, 1:5]) * whwh | |
# Per target class | |
for cls in torch.unique(tcls_tensor): | |
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices | |
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices | |
# Search for detections | |
if pi.shape[0]: | |
# Prediction to target ious | |
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices | |
# Append detections | |
detected_set = set() | |
for j in (ious > iouv[0]).nonzero(as_tuple=False): | |
d = ti[i[j]] # detected target | |
if d.item() not in detected_set: | |
detected_set.add(d.item()) | |
detected.append(d) | |
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn | |
if len(detected) == nl: # all targets already located in image | |
break | |
# Append statistics (correct, conf, pcls, tcls) | |
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) | |
# Plot images | |
if plots and batch_i < 3: | |
f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename | |
plot_images(img, targets, paths, f, names) # labels | |
f = save_dir / f'test_batch{batch_i}_pred.jpg' | |
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions | |
# Compute statistics | |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy | |
if len(stats) and stats[0].any(): | |
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png') | |
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] | |
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() | |
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class | |
else: | |
nt = torch.zeros(1) | |
# W&B logging | |
if plots and wandb: | |
wandb.log({"Images": wandb_images}) | |
wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]}) | |
# Print results | |
pf = '%20s' + '%12.3g' * 6 # print format | |
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) | |
# Print results per class | |
if verbose and nc > 1 and len(stats): | |
for i, c in enumerate(ap_class): | |
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |
# Print speeds | |
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple | |
if not training: | |
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) | |
# Save JSON | |
if save_json and len(jdict): | |
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights | |
anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json | |
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) | |
with open(pred_json, 'w') as f: | |
json.dump(jdict, f) | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
from pycocotools.coco import COCO | |
from pycocotools.cocoeval import COCOeval | |
anno = COCO(anno_json) # init annotations api | |
pred = anno.loadRes(pred_json) # init predictions api | |
eval = COCOeval(anno, pred, 'bbox') | |
if is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) | |
except Exception as e: | |
print('ERROR: pycocotools unable to run: %s' % e) | |
# Return results | |
if not training: | |
print('Results saved to %s' % save_dir) | |
model.float() # for training | |
maps = np.zeros(nc) + map | |
for i, c in enumerate(ap_class): | |
maps[c] = ap[i] | |
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(prog='test.py') | |
parser.add_argument('--weights', nargs='+', type=str, default='yolor_p6.pt', help='model.pt path(s)') | |
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') | |
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') | |
parser.add_argument('--img-size', type=int, default=1280, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') | |
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--verbose', action='store_true', help='report mAP by class') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') | |
parser.add_argument('--project', default='runs/test', help='save to project/name') | |
parser.add_argument('--name', default='exp', help='save to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--cfg', type=str, default='cfg/yolor_p6.cfg', help='*.cfg path') | |
parser.add_argument('--names', type=str, default='data/coco.names', help='*.cfg path') | |
opt = parser.parse_args() | |
opt.save_json |= opt.data.endswith('coco.yaml') | |
opt.data = check_file(opt.data) # check file | |
print(opt) | |
if opt.task in ['val', 'test']: # run normally | |
test(opt.data, | |
opt.weights, | |
opt.batch_size, | |
opt.img_size, | |
opt.conf_thres, | |
opt.iou_thres, | |
opt.save_json, | |
opt.single_cls, | |
opt.augment, | |
opt.verbose, | |
save_txt=opt.save_txt, | |
save_conf=opt.save_conf, | |
) | |
elif opt.task == 'study': # run over a range of settings and save/plot | |
for weights in ['yolor_p6.pt', 'yolor_w6.pt']: | |
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to | |
x = list(range(320, 800, 64)) # x axis | |
y = [] # y axis | |
for i in x: # img-size | |
print('\nRunning %s point %s...' % (f, i)) | |
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) | |
y.append(r + t) # results and times | |
np.savetxt(f, y, fmt='%10.4g') # save | |
os.system('zip -r study.zip study_*.txt') | |
# utils.general.plot_study_txt(f, x) # plot | |