YOLOR / utils /metrics.py
karolmajek's picture
app
1a1ee1f
# Model validation metrics
import matplotlib.pyplot as plt
import numpy as np
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_p(x):
# Model fitness as a weighted combination of metrics
w = [1.0, 0.0, 0.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_r(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 1.0, 0.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_ap50(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 1.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_ap(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_f(x):
# Model fitness as a weighted combination of metrics
#w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return ((x[:, 0]*x[:, 1])/(x[:, 0]+x[:, 1]))
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at mAP@0.5
fname: Plot filename
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + 1e-16) # recall curve
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 score (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
if plot:
py = np.stack(py, axis=1)
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend()
fig.tight_layout()
fig.savefig(fname, dpi=200)
return p, r, ap, f1, unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec