.
diff --git a/README.md b/README.md
index 41aea0a16055fa183ec492e0c10bae5699cdd791..82f299f5d86a97c3e0be804ca581a1610a72c990 100644
--- a/README.md
+++ b/README.md
@@ -1,6 +1,6 @@
---
title: YOLOR
-emoji: 📉
+emoji: 🚀
colorFrom: gray
colorTo: purple
sdk: gradio
@@ -35,3 +35,226 @@ Path is relative to the root of the repository.
`pinned`: _boolean_
Whether the Space stays on top of your list.
+
+
+# YOLOR
+implementation of paper - [You Only Learn One Representation: Unified Network for Multiple Tasks](https://arxiv.org/abs/2105.04206)
+
+[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/you-only-learn-one-representation-unified/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=you-only-learn-one-representation-unified)
+
+![Unified Network](https://github.com/WongKinYiu/yolor/blob/main/figure/unifued_network.png)
+
+
+
+To get the results on the table, please use [this branch](https://github.com/WongKinYiu/yolor/tree/paper).
+
+| Model | Test Size | APtest | AP50test | AP75test | batch1 throughput | batch32 inference |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
+| **YOLOR-P6** | 1280 | **54.1%** | **71.8%** | **59.3%** | 49 *fps* | 8.3 *ms* |
+| **YOLOR-W6** | 1280 | **55.5%** | **73.2%** | **60.6%** | 47 *fps* | 10.7 *ms* |
+| **YOLOR-E6** | 1280 | **56.4%** | **74.1%** | **61.6%** | 37 *fps* | 17.1 *ms* |
+| **YOLOR-D6** | 1280 | **57.3%** | **75.0%** | **62.7%** | 30 *fps* | 21.8 *ms* |
+| **YOLOR-D6*** | 1280 | **57.8%** | **75.5%** | **63.3%** | 30 *fps* | 21.8 *ms* |
+| | | | | | | |
+| **YOLOv4-P5** | 896 | **51.8%** | **70.3%** | **56.6%** | 41 *fps* | - |
+| **YOLOv4-P6** | 1280 | **54.5%** | **72.6%** | **59.8%** | 30 *fps* | - |
+| **YOLOv4-P7** | 1536 | **55.5%** | **73.4%** | **60.8%** | 16 *fps* | - |
+| | | | | | | |
+
+To reproduce the inference speed, please see [darknet](https://github.com/WongKinYiu/yolor/tree/main/darknet).
+
+| Model | Test Size | APval | AP50val | AP75val | APSval | APMval | APLval | batch1 throughput |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
+| [**YOLOv4-CSP**](/cfg/yolov4_csp.cfg) | 640 | **49.1%** | **67.7%** | **53.8%** | **32.1%** | **54.4%** | **63.2%** | 76 *fps* |
+| [**YOLOR-CSP**](/cfg/yolor_csp.cfg) | 640 | **49.2%** | **67.6%** | **53.7%** | **32.9%** | **54.4%** | **63.0%** | [weights](https://drive.google.com/file/d/1ZEqGy4kmZyD-Cj3tEFJcLSZenZBDGiyg/view?usp=sharing) |
+| [**YOLOR-CSP***](/cfg/yolor_csp.cfg) | 640 | **50.0%** | **68.7%** | **54.3%** | **34.2%** | **55.1%** | **64.3%** | [weights](https://drive.google.com/file/d/1OJKgIasELZYxkIjFoiqyn555bcmixUP2/view?usp=sharing) |
+| | | | | | | |
+| [**YOLOv4-CSP-X**](/cfg/yolov4_csp_x.cfg) | 640 | **50.9%** | **69.3%** | **55.4%** | **35.3%** | **55.8%** | **64.8%** | 53 *fps* |
+| [**YOLOR-CSP-X**](/cfg/yolor_csp_x.cfg) | 640 | **51.1%** | **69.6%** | **55.7%** | **35.7%** | **56.0%** | **65.2%** | [weights](https://drive.google.com/file/d/1L29rfIPNH1n910qQClGftknWpTBgAv6c/view?usp=sharing) |
+| [**YOLOR-CSP-X***](/cfg/yolor_csp_x.cfg) | 640 | **51.5%** | **69.9%** | **56.1%** | **35.8%** | **56.8%** | **66.1%** | [weights](https://drive.google.com/file/d/1NbMG3ivuBQ4S8kEhFJ0FIqOQXevGje_w/view?usp=sharing) |
+| | | | | | | |
+
+Developing...
+
+| Model | Test Size | APtest | AP50test | AP75test | APStest | APMtest | APLtest |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
+| **YOLOR-CSP** | 640 | **51.1%** | **69.6%** | **55.7%** | **31.7%** | **55.3%** | **64.7%** |
+| **YOLOR-CSP-X** | 640 | **53.0%** | **71.4%** | **57.9%** | **33.7%** | **57.1%** | **66.8%** |
+
+Train from scratch for 300 epochs...
+
+| Model | Info | Test Size | AP |
+| :-- | :-- | :-: | :-: |
+| **YOLOR-CSP** | [evolution](https://github.com/ultralytics/yolov3/issues/392) | 640 | **48.0%** |
+| **YOLOR-CSP** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) | 640 | **50.0%** |
+| **YOLOR-CSP** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) + [simOTA](https://arxiv.org/abs/2107.08430) | 640 | **51.1%** |
+| | | | |
+| **YOLOR-CSP-X** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) | 640 | **51.5%** |
+| **YOLOR-CSP-X** | [strategy](https://openaccess.thecvf.com/content/ICCV2021W/LPCV/html/Wang_Exploring_the_Power_of_Lightweight_YOLOv4_ICCVW_2021_paper.html) + [simOTA](https://arxiv.org/abs/2107.08430) | 640 | **53.0%** |
+
+## Installation
+
+Docker environment (recommended)
+ Expand
+
+```
+# create the docker container, you can change the share memory size if you have more.
+nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:20.11-py3
+
+# apt install required packages
+apt update
+apt install -y zip htop screen libgl1-mesa-glx
+
+# pip install required packages
+pip install seaborn thop
+
+# install mish-cuda if you want to use mish activation
+# https://github.com/thomasbrandon/mish-cuda
+# https://github.com/JunnYu/mish-cuda
+cd /
+git clone https://github.com/JunnYu/mish-cuda
+cd mish-cuda
+python setup.py build install
+
+# install pytorch_wavelets if you want to use dwt down-sampling module
+# https://github.com/fbcotter/pytorch_wavelets
+cd /
+git clone https://github.com/fbcotter/pytorch_wavelets
+cd pytorch_wavelets
+pip install .
+
+# go to code folder
+cd /yolor
+```
+
+
+
+Colab environment
+ Expand
+
+```
+git clone https://github.com/WongKinYiu/yolor
+cd yolor
+
+# pip install required packages
+pip install -qr requirements.txt
+
+# install mish-cuda if you want to use mish activation
+# https://github.com/thomasbrandon/mish-cuda
+# https://github.com/JunnYu/mish-cuda
+git clone https://github.com/JunnYu/mish-cuda
+cd mish-cuda
+python setup.py build install
+cd ..
+
+# install pytorch_wavelets if you want to use dwt down-sampling module
+# https://github.com/fbcotter/pytorch_wavelets
+git clone https://github.com/fbcotter/pytorch_wavelets
+cd pytorch_wavelets
+pip install .
+cd ..
+```
+
+
+
+Prepare COCO dataset
+ Expand
+
+```
+cd /yolor
+bash scripts/get_coco.sh
+```
+
+
+
+Prepare pretrained weight
+ Expand
+
+```
+cd /yolor
+bash scripts/get_pretrain.sh
+```
+
+
+
+## Testing
+
+[`yolor_p6.pt`](https://drive.google.com/file/d/1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76/view?usp=sharing)
+
+```
+python test.py --data data/coco.yaml --img 1280 --batch 32 --conf 0.001 --iou 0.65 --device 0 --cfg cfg/yolor_p6.cfg --weights yolor_p6.pt --name yolor_p6_val
+```
+
+You will get the results:
+
+```
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.52510
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.70718
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.57520
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.37058
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.56878
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66102
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.39181
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.65229
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.71441
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.57755
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.75337
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.84013
+```
+
+## Training
+
+Single GPU training:
+
+```
+python train.py --batch-size 8 --img 1280 1280 --data coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0 --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
+```
+
+Multiple GPU training:
+
+```
+python -m torch.distributed.launch --nproc_per_node 2 --master_port 9527 train.py --batch-size 16 --img 1280 1280 --data coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0,1 --sync-bn --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
+```
+
+Training schedule in the paper:
+
+```
+python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights '' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6 --hyp hyp.scratch.1280.yaml --epochs 300
+python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 tune.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights 'runs/train/yolor_p6/weights/last_298.pt' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6-tune --hyp hyp.finetune.1280.yaml --epochs 450
+python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg cfg/yolor_p6.cfg --weights 'runs/train/yolor_p6-tune/weights/epoch_424.pt' --device 0,1,2,3,4,5,6,7 --sync-bn --name yolor_p6-fine --hyp hyp.finetune.1280.yaml --epochs 450
+```
+
+## Inference
+
+[`yolor_p6.pt`](https://drive.google.com/file/d/1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76/view?usp=sharing)
+
+```
+python detect.py --source inference/images/horses.jpg --cfg cfg/yolor_p6.cfg --weights yolor_p6.pt --conf 0.25 --img-size 1280 --device 0
+```
+
+You will get the results:
+
+![horses](https://github.com/WongKinYiu/yolor/blob/main/inference/output/horses.jpg)
+
+## Citation
+
+```
+@article{wang2021you,
+ title={You Only Learn One Representation: Unified Network for Multiple Tasks},
+ author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark},
+ journal={arXiv preprint arXiv:2105.04206},
+ year={2021}
+}
+```
+
+## Acknowledgements
+
+ Expand
+
+* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
+* [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
+* [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
+* [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
+* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
+
+
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa5e21b9f3b8ff8fe0721868c63a82f2a2cae2cb
--- /dev/null
+++ b/app.py
@@ -0,0 +1,104 @@
+from PIL import Image
+import cv2
+import torch
+from numpy import random
+
+from utils.general import (non_max_suppression, scale_coords)
+from utils.plots import plot_one_box
+
+from models.models import *
+from utils.datasets import *
+from utils.general import *
+
+import gradio as gr
+import requests
+
+import gdown
+
+
+url = 'https://drive.google.com/u/0/uc?id=1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76&export=download'
+output = 'yolor_p6.pt'
+gdown.download(url, output, quiet=False)
+
+url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
+r = requests.get(url1, allow_redirects=True)
+open("city1.jpg", 'wb').write(r.content)
+url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
+r = requests.get(url2, allow_redirects=True)
+open("city2.jpg", 'wb').write(r.content)
+
+
+conf_thres = 0.4
+iou_thres = 0.5
+
+
+def load_classes(path):
+ # Loads *.names file at 'path'
+ with open(path, 'r') as f:
+ names = f.read().split('\n')
+ return list(filter(None, names)) # filter removes empty strings (such as last line)
+
+def detect(pil_img,names):
+ img_np = np.array(pil_img)
+ img = torch.from_numpy(img_np)
+ img = img.float()
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
+
+ # Inference
+ pred = model(img.unsqueeze(0).permute(0,3,1,2), augment=False)[0]
+
+ # Apply NMS
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes=None, agnostic=False)
+
+ # Process detections
+ for i, det in enumerate(pred): # detections per image
+ if det is not None and len(det):
+ # Rescale boxes from img_size to im0 size
+ det[:, :4] = scale_coords(img_np.shape, det[:, :4], img_np.shape).round()
+
+ # Print results
+ for c in det[:, -1].unique():
+ n = (det[:, -1] == c).sum() # detections per class
+
+ # Write results
+ for *xyxy, conf, cls in det:
+ label = '%s %.2f' % (names[int(cls)], conf)
+ plot_one_box(xyxy, img_np, label=label, color=colors[int(cls)], line_thickness=3)
+ cv2.imwrite('/tmp/aaa.jpg',img_np[:,:,::-1])
+ return Image.fromarray(img_np)
+
+
+with torch.no_grad():
+ cfg = 'cfg/yolor_p6.cfg'
+ imgsz = 1280
+ names = 'data/coco.names'
+ weights = 'yolor_p6.pt'
+
+ # Load model
+ model = Darknet(cfg, imgsz)
+ model.load_state_dict(torch.load(weights)['model'])
+ model.eval()
+
+ # Get names and colors
+ names = load_classes(names)
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
+
+ def inference(image):
+ image = image.resize(size=(imgsz, imgsz))
+ return detect(image, names)
+
+ title = "YOLOR P6"
+ description = "demo for YOLOR. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\nModel: YOLOR-P6"
+ article = "You Only Learn One Representation: Unified Network for Multiple Tasks | Github Repo
"
+
+ gr.Interface(
+ inference,
+ [gr.inputs.Image(type="pil", label="Input")],
+ gr.outputs.Image(type="numpy", label="Output"),
+ title=title,
+ description=description,
+ article=article,
+ examples=[
+ ["city1.jpg"],
+ ["city2.jpg"]
+ ]).launch()
diff --git a/cfg/yolor_csp.cfg b/cfg/yolor_csp.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..9f5f3ab421200036bf5d5c58f9be964f6d2e47a2
--- /dev/null
+++ b/cfg/yolor_csp.cfg
@@ -0,0 +1,1376 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=512
+height=512
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#cutmix=1
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=silu
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-10
+
+# Transition last
+
+# 17 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 48 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 79 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-16
+
+# Transition last
+
+# 98 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, -13
+
+# 113 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 79
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 127 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 48
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 141 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1, 127
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 152 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, 113
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 163 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# 164
+[implicit_add]
+filters=256
+
+# 165
+[implicit_add]
+filters=512
+
+# 166
+[implicit_add]
+filters=1024
+
+# 167
+[implicit_mul]
+filters=255
+
+# 168
+[implicit_mul]
+filters=255
+
+# 169
+[implicit_mul]
+filters=255
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 141
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[shift_channels]
+from=164
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=167
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 152
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[shift_channels]
+from=165
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=168
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 163
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=silu
+
+[shift_channels]
+from=166
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=169
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
diff --git a/cfg/yolor_csp_x.cfg b/cfg/yolor_csp_x.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..55a54109bf4882055ebc02b5a8688bfd3d618e4d
--- /dev/null
+++ b/cfg/yolor_csp_x.cfg
@@ -0,0 +1,1576 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=512
+height=512
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#cutmix=1
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=silu
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-13
+
+# Transition last
+
+# 20 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 57 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 94 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-19
+
+# Transition last
+
+# 116 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1, -15
+
+# 133 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 94
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 149 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 57
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 165 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1, 149
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 178 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1, 133
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 191 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# 192
+[implicit_add]
+filters=320
+
+# 193
+[implicit_add]
+filters=640
+
+# 194
+[implicit_add]
+filters=1280
+
+# 195
+[implicit_mul]
+filters=255
+
+# 196
+[implicit_mul]
+filters=255
+
+# 197
+[implicit_mul]
+filters=255
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 165
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[shift_channels]
+from=192
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=195
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 178
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[shift_channels]
+from=193
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=196
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 191
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=silu
+
+[shift_channels]
+from=194
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=197
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
diff --git a/cfg/yolor_p6.cfg b/cfg/yolor_p6.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..c7fe50c1c5e22c047194c83c8809d4f223a557e9
--- /dev/null
+++ b/cfg/yolor_p6.cfg
@@ -0,0 +1,1760 @@
+[net]
+batch=64
+subdivisions=8
+width=1280
+height=1280
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# P1
+
+# Downsample
+
+# 0
+[reorg]
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=64
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 16 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=128
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-24
+
+# Transition last
+
+# 43 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=192
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-24
+
+# Transition last
+
+# 70 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=256
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 85 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P6
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=320
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 100 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1, -13
+
+# 115 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-5
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 85
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 131 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 70
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 147 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 43
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 163 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=192
+activation=silu
+
+[route]
+layers = -1, 147
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=192
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 176 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=192
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1, 131
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 189 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-6
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1, 115
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 202 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# 203
+[implicit_add]
+filters=256
+
+# 204
+[implicit_add]
+filters=384
+
+# 205
+[implicit_add]
+filters=512
+
+# 206
+[implicit_add]
+filters=640
+
+# 207
+[implicit_mul]
+filters=255
+
+# 208
+[implicit_mul]
+filters=255
+
+# 209
+[implicit_mul]
+filters=255
+
+# 210
+[implicit_mul]
+filters=255
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 163
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[shift_channels]
+from=203
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=207
+
+[yolo]
+mask = 0,1,2
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 176
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[shift_channels]
+from=204
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=208
+
+[yolo]
+mask = 3,4,5
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 189
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[shift_channels]
+from=205
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=209
+
+[yolo]
+mask = 6,7,8
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-6
+
+[route]
+layers = 202
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[shift_channels]
+from=206
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=210
+
+[yolo]
+mask = 9,10,11
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+# ============ End of Head ============ #
diff --git a/cfg/yolor_w6.cfg b/cfg/yolor_w6.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..b91167a2e06a1f0f15d9c88234d9c5971c3ad29c
--- /dev/null
+++ b/cfg/yolor_w6.cfg
@@ -0,0 +1,1760 @@
+[net]
+batch=64
+subdivisions=8
+width=1280
+height=1280
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# P1
+
+# Downsample
+
+# 0
+[reorg]
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=64
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 16 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=128
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-24
+
+# Transition last
+
+# 43 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=256
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-24
+
+# Transition last
+
+# 70 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=768
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=384
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 85 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=768
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# P6
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+#
+#[convolutional]
+#batch_normalize=1
+#filters=512
+#size=1
+#stride=1
+#pad=1
+#activation=silu
+
+# Merge [-1, -(3k+3)]
+
+[route]
+layers = -1,-12
+
+# Transition last
+
+# 100 (previous+6+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, -13
+
+# 115 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-5
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 85
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 131 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 70
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 147 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 43
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 163 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1, 147
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 176 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=384
+activation=silu
+
+[route]
+layers = -1, 131
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=384
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 189 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=384
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-6
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, 115
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 202 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# 203
+[implicit_add]
+filters=256
+
+# 204
+[implicit_add]
+filters=512
+
+# 205
+[implicit_add]
+filters=768
+
+# 206
+[implicit_add]
+filters=1024
+
+# 207
+[implicit_mul]
+filters=255
+
+# 208
+[implicit_mul]
+filters=255
+
+# 209
+[implicit_mul]
+filters=255
+
+# 210
+[implicit_mul]
+filters=255
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 163
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[shift_channels]
+from=203
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=207
+
+[yolo]
+mask = 0,1,2
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 176
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[shift_channels]
+from=204
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=208
+
+[yolo]
+mask = 3,4,5
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 189
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=768
+activation=silu
+
+[shift_channels]
+from=205
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=209
+
+[yolo]
+mask = 6,7,8
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-6
+
+[route]
+layers = 202
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=silu
+
+[shift_channels]
+from=206
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[control_channels]
+from=210
+
+[yolo]
+mask = 9,10,11
+anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+classes=80
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+# ============ End of Head ============ #
diff --git a/cfg/yolov4_csp.cfg b/cfg/yolov4_csp.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..c387ce968e193fa396e920c40914fb3fa5640df1
--- /dev/null
+++ b/cfg/yolov4_csp.cfg
@@ -0,0 +1,1334 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=512
+height=512
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#cutmix=1
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=silu
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-10
+
+# Transition last
+
+# 17 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 48 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 79 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-16
+
+# Transition last
+
+# 98 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, -13
+
+# 113 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 79
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 127 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 48
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 141 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1, 127
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 152 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1, 113
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 163 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 141
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 152
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 163
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
diff --git a/cfg/yolov4_csp_x.cfg b/cfg/yolov4_csp_x.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..285abc4d871f4313e631fcf6c1d090f2e389d636
--- /dev/null
+++ b/cfg/yolov4_csp_x.cfg
@@ -0,0 +1,1534 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=512
+height=512
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#cutmix=1
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=silu
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-13
+
+# Transition last
+
+# 20 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 57 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 94 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=silu
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-19
+
+# Transition last
+
+# 116 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1, -15
+
+# 133 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 94
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 149 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[upsample]
+stride=2
+
+[route]
+layers = 57
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=silu
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 165 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1, 149
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 178 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=silu
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1, 133
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 191 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=silu
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 165
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 178
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 191
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=silu
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
diff --git a/cfg/yolov4_p6.cfg b/cfg/yolov4_p6.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..1a4088414ba37efa2aca4cf9d20c45aa21458d3d
--- /dev/null
+++ b/cfg/yolov4_p6.cfg
@@ -0,0 +1,2260 @@
+[net]
+batch=64
+subdivisions=8
+width=1280
+height=1280
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=mish
+
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-7
+
+# Transition last
+
+# 10 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-13
+
+# Transition last
+
+# 26 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-49
+
+# Transition last
+
+# 78 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-49
+
+# Transition last
+
+# 130 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-25
+
+# Transition last
+
+# 158 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P6
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-25
+
+# Transition last
+
+# 186 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=mish
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[route]
+layers = -1, -13
+
+# 201 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# End of CSPSPP
+
+
+# FPN-5
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 158
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 217 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 130
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 233 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 78
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 249 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=mish
+
+[route]
+layers = -1, 233
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 262 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=mish
+
+[route]
+layers = -1, 217
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 275 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-6
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=mish
+
+[route]
+layers = -1, 201
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 288 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=mish
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 249
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 0,1,2,3
+anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
+classes=80
+num=16
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 262
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 4,5,6,7
+anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
+classes=80
+num=16
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 275
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 8,9,10,11
+anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
+classes=80
+num=16
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-6
+
+[route]
+layers = 288
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 12,13,14,15
+anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
+classes=80
+num=16
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+# ============ End of Head ============ #
diff --git a/cfg/yolov4_p7.cfg b/cfg/yolov4_p7.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..10379a0e759265d9cc39c8926e2606f46fa1083b
--- /dev/null
+++ b/cfg/yolov4_p7.cfg
@@ -0,0 +1,2714 @@
+[net]
+batch=64
+subdivisions=8
+width=1536
+height=1536
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=40
+size=3
+stride=1
+pad=1
+activation=mish
+
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-7
+
+# Transition last
+
+# 10 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-13
+
+# Transition last
+
+# 26 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-49
+
+# Transition last
+
+# 78 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-49
+
+# Transition last
+
+# 130 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-25
+
+# Transition last
+
+# 158 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P6
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-25
+
+# Transition last
+
+# 186 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# P7
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=mish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-25
+
+# Transition last
+
+# 214 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=mish
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1, -13
+
+# 229 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# End of CSPSPP
+
+
+# FPN-6
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 186
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 245 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# FPN-5
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 158
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 261 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 130
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 277 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[upsample]
+stride=2
+
+[route]
+layers = 78
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=mish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 293 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=320
+activation=mish
+
+[route]
+layers = -1, 277
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 306 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1, 261
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 319 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-6
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1, 245
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 332 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+
+# PAN-7
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1, 229
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 345 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=mish
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 293
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 0,1,2,3
+anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
+classes=80
+num=20
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-4
+
+[route]
+layers = 306
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 4,5,6,7
+anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
+classes=80
+num=20
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-5
+
+[route]
+layers = 319
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 8,9,10,11
+anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
+classes=80
+num=20
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-6
+
+[route]
+layers = 332
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 12,13,14,15
+anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
+classes=80
+num=20
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+
+# YOLO-7
+
+[route]
+layers = 345
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=mish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=340
+activation=linear
+
+[yolo]
+mask = 16,17,18,19
+anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
+classes=80
+num=20
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+
+# ============ End of Head ============ #
diff --git a/darknet/README.md b/darknet/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d2fc579741572cb0eaa03ca74598eee6da50985f
--- /dev/null
+++ b/darknet/README.md
@@ -0,0 +1,63 @@
+## Model Zoo
+
+| Model | Test Size | APval | AP50val | AP75val | APSval | APMval | APLval | batch1 throughput |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
+| **YOLOv4-CSP** | 640 | **49.1%** | **67.7%** | **53.8%** | **32.1%** | **54.4%** | **63.2%** | 76 *fps* |
+| **YOLOR-CSP** | 640 | **49.2%** | **67.6%** | **53.7%** | **32.9%** | **54.4%** | **63.0%** | - |
+| | | | | | | |
+| **YOLOv4-CSP-X** | 640 | **50.9%** | **69.3%** | **55.4%** | **35.3%** | **55.8%** | **64.8%** | 53 *fps* |
+| **YOLOR-CSP-X** | 640 | **51.1%** | **69.6%** | **55.7%** | **35.7%** | **56.0%** | **65.2%** | - |
+| | | | | | | |
+
+## Installation
+
+https://github.com/AlexeyAB/darknet
+
+Docker environment (recommended)
+ Expand
+
+```
+# get code
+git clone https://github.com/AlexeyAB/darknet
+
+# create the docker container, you can change the share memory size if you have more.
+nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:21.02-py3
+
+# apt install required packages
+apt update
+apt install -y libopencv-dev
+
+# edit Makefile
+#GPU=1
+#CUDNN=1
+#CUDNN_HALF=1
+#OPENCV=1
+#AVX=1
+#OPENMP=1
+#LIBSO=1
+#ZED_CAMERA=0
+#ZED_CAMERA_v2_8=0
+#
+#USE_CPP=0
+#DEBUG=0
+#
+#ARCH= -gencode arch=compute_52,code=[sm_70,compute_70] \
+# -gencode arch=compute_61,code=[sm_75,compute_75] \
+# -gencode arch=compute_61,code=[sm_80,compute_80] \
+# -gencode arch=compute_61,code=[sm_86,compute_86]
+#
+#...
+
+# build
+make -j8
+```
+
+
+
+## Testing
+
+To reproduce inference speed, using:
+
+```
+CUDA_VISIBLE_DEVICES=0 ./darknet detector demo cfg/coco.data cfg/yolov4-csp.cfg weights/yolov4-csp.weights source/test.mp4 -dont_show -benchmark
+```
diff --git a/darknet/cfg/yolov4-csp-x.cfg b/darknet/cfg/yolov4-csp-x.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..e7acf9ef4e49aa9d97ddfe41f72447ac033804cf
--- /dev/null
+++ b/darknet/cfg/yolov4-csp-x.cfg
@@ -0,0 +1,1555 @@
+
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=640
+height=640
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+letter_box=1
+
+ema_alpha=0.9998
+
+#optimized_memory=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=swish
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=40
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=swish
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=80
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-13
+
+# Transition last
+
+# 20 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 57 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-34
+
+# Transition last
+
+# 94 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1280
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-19
+
+# Transition last
+
+# 116 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1280
+size=1
+stride=1
+pad=1
+activation=swish
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[route]
+layers = -1, -15
+
+# 133 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[upsample]
+stride=2
+
+[route]
+layers = 94
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 149 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[upsample]
+stride=2
+
+[route]
+layers = 57
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=160
+activation=swish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -8
+
+# Transition last
+
+# 165 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=160
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=320
+activation=swish
+
+[route]
+layers = -1, 149
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 178 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=320
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=640
+activation=swish
+
+[route]
+layers = -1, 133
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[route]
+layers = -1,-8
+
+# Transition last
+
+# 191 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=640
+size=1
+stride=1
+pad=1
+activation=swish
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 165
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=320
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
+
+
+# YOLO-4
+
+[route]
+layers = 178
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=640
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
+
+
+# YOLO-5
+
+[route]
+layers = 191
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1280
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
diff --git a/darknet/cfg/yolov4-csp.cfg b/darknet/cfg/yolov4-csp.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..a47c9f7160e77e1aea809f5840c93498b2443978
--- /dev/null
+++ b/darknet/cfg/yolov4-csp.cfg
@@ -0,0 +1,1354 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=640
+height=640
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+mosaic=1
+
+letter_box=1
+
+ema_alpha=0.9998
+
+#optimized_memory=1
+
+
+# ============ Backbone ============ #
+
+# Stem
+
+# 0
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=swish
+
+# P1
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=swish
+
+# 4 (previous+1+3k)
+[shortcut]
+from=-3
+activation=linear
+
+# P2
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1, -(3k+4)]
+
+[route]
+layers = -1,-10
+
+# Transition last
+
+# 17 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P3
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(4+3k)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 48 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P4
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-28
+
+# Transition last
+
+# 79 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# P5
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Residual Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=swish
+
+[shortcut]
+from=-3
+activation=linear
+
+# Transition first
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Merge [-1 -(3k+4)]
+
+[route]
+layers = -1,-16
+
+# Transition last
+
+# 98 (previous+7+3k)
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=swish
+
+# ============ End of Backbone ============ #
+
+# ============ Neck ============ #
+
+# CSPSPP
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=swish
+
+[route]
+layers = -1, -13
+
+# 113 (previous+6+5+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# End of CSPSPP
+
+
+# FPN-4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[upsample]
+stride=2
+
+[route]
+layers = 79
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=swish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 127 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# FPN-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[upsample]
+stride=2
+
+[route]
+layers = 48
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=swish
+
+# Merge [-1, -(2k+2)]
+
+[route]
+layers = -1, -6
+
+# Transition last
+
+# 141 (previous+6+4+2k)
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# PAN-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=swish
+
+[route]
+layers = -1, 127
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=swish
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 152 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=swish
+
+
+# PAN-5
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=swish
+
+[route]
+layers = -1, 113
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# Split
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[route]
+layers = -2
+
+# Plain Block
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=swish
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=swish
+
+[route]
+layers = -1,-6
+
+# Transition last
+
+# 163 (previous+3+4+2k)
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=swish
+
+# ============ End of Neck ============ #
+
+# ============ Head ============ #
+
+# YOLO-3
+
+[route]
+layers = 141
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
+
+
+# YOLO-4
+
+[route]
+layers = 152
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
+
+
+# YOLO-5
+
+[route]
+layers = 163
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=swish
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=logistic
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.1
+scale_x_y = 2.0
+objectness_smooth=1
+ignore_thresh = .7
+truth_thresh = 1
+#random=1
+resize=1.5
+iou_thresh=0.2
+iou_normalizer=0.05
+cls_normalizer=0.5
+obj_normalizer=0.4
+iou_loss=ciou
+nms_kind=diounms
+beta_nms=0.6
+new_coords=1
+max_delta=2
diff --git a/darknet/new_layers.md b/darknet/new_layers.md
new file mode 100644
index 0000000000000000000000000000000000000000..9f7a35c02ae6564f35688aab29b3aed0f3ad3a2b
--- /dev/null
+++ b/darknet/new_layers.md
@@ -0,0 +1,329 @@
+![Implicit Modeling](https://github.com/WongKinYiu/yolor/blob/main/figure/implicit_modeling.png)
+
+### 1. silence layer
+
+Usage:
+
+```
+[silence]
+```
+
+PyTorch code:
+
+``` python
+class Silence(nn.Module):
+ def __init__(self):
+ super(Silence, self).__init__()
+ def forward(self, x):
+ return x
+```
+
+
+### 2. implicit_add layer
+
+Usage:
+
+```
+[implicit_add]
+filters=128
+```
+
+PyTorch code:
+
+``` python
+class ImplicitA(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitA, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 3. shift_channels layer
+
+Usage:
+
+```
+[shift_channels]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class ShiftChannel(nn.Module):
+ def __init__(self, layers):
+ super(ShiftChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return a.expand_as(x) + x
+```
+
+
+### 4. implicit_mul layer
+
+Usage:
+
+```
+[implicit_mul]
+filters=128
+```
+
+PyTorch code:
+
+``` python
+class ImplicitM(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitM, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, mean=1., std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 5. control_channels layer
+
+Usage:
+
+```
+[control_channels]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class ControlChannel(nn.Module):
+ def __init__(self, layers):
+ super(ControlChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return a.expand_as(x) * x
+```
+
+
+### 6. implicit_cat layer
+
+Usage:
+
+```
+[implicit_cat]
+filters=128
+```
+
+PyTorch code: (same as ImplicitA)
+
+``` python
+class ImplicitC(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitC, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 7. alternate_channels layer
+
+Usage:
+
+```
+[alternate_channels]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class AlternateChannel(nn.Module):
+ def __init__(self, layers):
+ super(AlternateChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return torch.cat([a.expand_as(x), x], dim=1)
+```
+
+
+### 8. implicit_add_2d layer
+
+Usage:
+
+```
+[implicit_add_2d]
+filters=128
+atoms=128
+```
+
+PyTorch code:
+
+``` python
+class Implicit2DA(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DA, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 9. shift_channels_2d layer
+
+Usage:
+
+```
+[shift_channels_2d]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class ShiftChannel2D(nn.Module):
+ def __init__(self, layers):
+ super(ShiftChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return a.expand_as(x) + x
+```
+
+
+### 10. implicit_mul_2d layer
+
+Usage:
+
+```
+[implicit_mul_2d]
+filters=128
+atoms=128
+```
+
+PyTorch code:
+
+``` python
+class Implicit2DM(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DM, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, mean=1., std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 11. control_channels_2d layer
+
+Usage:
+
+```
+[control_channels_2d]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class ControlChannel2D(nn.Module):
+ def __init__(self, layers):
+ super(ControlChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return a.expand_as(x) * x
+```
+
+
+### 12. implicit_cat_2d layer
+
+Usage:
+
+```
+[implicit_cat_2d]
+filters=128
+atoms=128
+```
+
+PyTorch code: (same as Implicit2DA)
+
+``` python
+class Implicit2DC(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DC, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+```
+
+
+### 13. alternate_channels_2d layer
+
+Usage:
+
+```
+[alternate_channels_2d]
+from=101
+```
+
+PyTorch code:
+
+``` python
+class AlternateChannel2D(nn.Module):
+ def __init__(self, layers):
+ super(AlternateChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return torch.cat([a.expand_as(x), x], dim=1)
+```
+
+
+### 14. dwt layer
+
+Usage:
+
+```
+[dwt]
+```
+
+PyTorch code:
+
+``` python
+# https://github.com/fbcotter/pytorch_wavelets
+from pytorch_wavelets import DWTForward, DWTInverse
+class DWT(nn.Module):
+ def __init__(self):
+ super(DWT, self).__init__()
+ self.xfm = DWTForward(J=1, wave='db1', mode='zero')
+
+ def forward(self, x):
+ b,c,w,h = x.shape
+ yl, yh = self.xfm(x)
+ return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1)
+```
diff --git a/data/coco.names b/data/coco.names
new file mode 100644
index 0000000000000000000000000000000000000000..941cb4e1392266f6a6c09b1fdc5f79503b2e5df6
--- /dev/null
+++ b/data/coco.names
@@ -0,0 +1,80 @@
+person
+bicycle
+car
+motorcycle
+airplane
+bus
+train
+truck
+boat
+traffic light
+fire hydrant
+stop sign
+parking meter
+bench
+bird
+cat
+dog
+horse
+sheep
+cow
+elephant
+bear
+zebra
+giraffe
+backpack
+umbrella
+handbag
+tie
+suitcase
+frisbee
+skis
+snowboard
+sports ball
+kite
+baseball bat
+baseball glove
+skateboard
+surfboard
+tennis racket
+bottle
+wine glass
+cup
+fork
+knife
+spoon
+bowl
+banana
+apple
+sandwich
+orange
+broccoli
+carrot
+hot dog
+pizza
+donut
+cake
+chair
+couch
+potted plant
+bed
+dining table
+toilet
+tv
+laptop
+mouse
+remote
+keyboard
+cell phone
+microwave
+oven
+toaster
+sink
+refrigerator
+book
+clock
+vase
+scissors
+teddy bear
+hair drier
+toothbrush
diff --git a/data/coco.yaml b/data/coco.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9ecc707d85a9be0fc5e735f98e09c3931c4fcc96
--- /dev/null
+++ b/data/coco.yaml
@@ -0,0 +1,18 @@
+# train and val datasets (image directory or *.txt file with image paths)
+train: ../coco/train2017.txt # 118k images
+val: ../coco/val2017.txt # 5k images
+test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794
+
+# number of classes
+nc: 80
+
+# class names
+names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+ 'hair drier', 'toothbrush']
diff --git a/data/hyp.finetune.1280.yaml b/data/hyp.finetune.1280.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d3ebbe10f1e6c70007eed0d38d31afba3c0348aa
--- /dev/null
+++ b/data/hyp.finetune.1280.yaml
@@ -0,0 +1,28 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.5 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 1.0 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3 # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.5 # image translation (+/- fraction)
+scale: 0.8 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.2 # image mixup (probability)
diff --git a/data/hyp.scratch.1280.yaml b/data/hyp.scratch.1280.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3b0f84b96ade2d97bb91ab6e6e4765cb5a64606b
--- /dev/null
+++ b/data/hyp.scratch.1280.yaml
@@ -0,0 +1,28 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.5 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 1.0 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3 # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.5 # image translation (+/- fraction)
+scale: 0.5 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.0 # image mixup (probability)
diff --git a/data/hyp.scratch.640.yaml b/data/hyp.scratch.640.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..00e458ae3a562bb1b03e832ca8d31703c7c24c4f
--- /dev/null
+++ b/data/hyp.scratch.640.yaml
@@ -0,0 +1,28 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3 # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.0 # image mixup (probability)
diff --git a/figure/implicit_modeling.png b/figure/implicit_modeling.png
new file mode 100644
index 0000000000000000000000000000000000000000..0de12f14fd621b6ed54b1123cbb33b8e40f93670
Binary files /dev/null and b/figure/implicit_modeling.png differ
diff --git a/figure/performance.png b/figure/performance.png
new file mode 100644
index 0000000000000000000000000000000000000000..b40f6d42b48813da4634966cb4f455cacb251731
Binary files /dev/null and b/figure/performance.png differ
diff --git a/figure/schedule.png b/figure/schedule.png
new file mode 100644
index 0000000000000000000000000000000000000000..bd5b6941d71c9ced8cd61a9802bfb9c7c3a753cd
Binary files /dev/null and b/figure/schedule.png differ
diff --git a/figure/unifued_network.png b/figure/unifued_network.png
new file mode 100644
index 0000000000000000000000000000000000000000..98542b555cbb6639d08e888413f64d62bb798f08
Binary files /dev/null and b/figure/unifued_network.png differ
diff --git a/inference/images/horses.jpg b/inference/images/horses.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3a761f46ba08ed459af026b59f6b91b6fa597dd1
Binary files /dev/null and b/inference/images/horses.jpg differ
diff --git a/inference/output/horses.jpg b/inference/output/horses.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6f1aa8283bea25cd25d224e8688ae5ed0c1484dc
Binary files /dev/null and b/inference/output/horses.jpg differ
diff --git a/models/__init__.py b/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc
--- /dev/null
+++ b/models/__init__.py
@@ -0,0 +1 @@
+
diff --git a/models/__pycache__/__init__.cpython-37.pyc b/models/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..12d074fd45c1dcc90b36d6a6334b944bf32b2626
Binary files /dev/null and b/models/__pycache__/__init__.cpython-37.pyc differ
diff --git a/models/__pycache__/models.cpython-37.pyc b/models/__pycache__/models.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f77fe55574e3a997fc23bc51f0f44c00dbe0e4ca
Binary files /dev/null and b/models/__pycache__/models.cpython-37.pyc differ
diff --git a/models/export.py b/models/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..d91813a0acaa9ab88a99ed5343a72e28d5cf275f
--- /dev/null
+++ b/models/export.py
@@ -0,0 +1,68 @@
+import argparse
+
+import torch
+
+from utils.google_utils import attempt_download
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov4.pt', help='weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ opt = parser.parse_args()
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
+ print(opt)
+
+ # Input
+ img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
+
+ # Load PyTorch model
+ attempt_download(opt.weights)
+ model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
+ model.eval()
+ model.model[-1].export = True # set Detect() layer export=True
+ y = model(img) # dry run
+
+ # TorchScript export
+ try:
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
+ ts = torch.jit.trace(model, img)
+ ts.save(f)
+ print('TorchScript export success, saved as %s' % f)
+ except Exception as e:
+ print('TorchScript export failure: %s' % e)
+
+ # ONNX export
+ try:
+ import onnx
+
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
+ f = opt.weights.replace('.pt', '.onnx') # filename
+ model.fuse() # only for ONNX
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
+ output_names=['classes', 'boxes'] if y is None else ['output'])
+
+ # Checks
+ onnx_model = onnx.load(f) # load onnx model
+ onnx.checker.check_model(onnx_model) # check onnx model
+ print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
+ print('ONNX export success, saved as %s' % f)
+ except Exception as e:
+ print('ONNX export failure: %s' % e)
+
+ # CoreML export
+ try:
+ import coremltools as ct
+
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
+ # convert model from torchscript and apply pixel scaling as per detect.py
+ model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
+ model.save(f)
+ print('CoreML export success, saved as %s' % f)
+ except Exception as e:
+ print('CoreML export failure: %s' % e)
+
+ # Finish
+ print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
diff --git a/models/models.py b/models/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..76c44b63a5e636932ab358d3b722aed2828303f4
--- /dev/null
+++ b/models/models.py
@@ -0,0 +1,761 @@
+from utils.google_utils import *
+from utils.layers import *
+from utils.parse_config import *
+from utils import torch_utils
+
+ONNX_EXPORT = False
+
+
+def create_modules(module_defs, img_size, cfg):
+ # Constructs module list of layer blocks from module configuration in module_defs
+
+ img_size = [img_size] * 2 if isinstance(img_size, int) else img_size # expand if necessary
+ _ = module_defs.pop(0) # cfg training hyperparams (unused)
+ output_filters = [3] # input channels
+ module_list = nn.ModuleList()
+ routs = [] # list of layers which rout to deeper layers
+ yolo_index = -1
+
+ for i, mdef in enumerate(module_defs):
+ modules = nn.Sequential()
+
+ if mdef['type'] == 'convolutional':
+ bn = mdef['batch_normalize']
+ filters = mdef['filters']
+ k = mdef['size'] # kernel size
+ stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x'])
+ if isinstance(k, int): # single-size conv
+ modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1],
+ out_channels=filters,
+ kernel_size=k,
+ stride=stride,
+ padding=k // 2 if mdef['pad'] else 0,
+ groups=mdef['groups'] if 'groups' in mdef else 1,
+ bias=not bn))
+ else: # multiple-size conv
+ modules.add_module('MixConv2d', MixConv2d(in_ch=output_filters[-1],
+ out_ch=filters,
+ k=k,
+ stride=stride,
+ bias=not bn))
+
+ if bn:
+ modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4))
+ else:
+ routs.append(i) # detection output (goes into yolo layer)
+
+ if mdef['activation'] == 'leaky': # activation study https://github.com/ultralytics/yolov3/issues/441
+ modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
+ elif mdef['activation'] == 'swish':
+ modules.add_module('activation', Swish())
+ elif mdef['activation'] == 'mish':
+ modules.add_module('activation', Mish())
+ elif mdef['activation'] == 'emb':
+ modules.add_module('activation', F.normalize())
+ elif mdef['activation'] == 'logistic':
+ modules.add_module('activation', nn.Sigmoid())
+ elif mdef['activation'] == 'silu':
+ modules.add_module('activation', nn.SiLU())
+
+ elif mdef['type'] == 'deformableconvolutional':
+ bn = mdef['batch_normalize']
+ filters = mdef['filters']
+ k = mdef['size'] # kernel size
+ stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x'])
+ if isinstance(k, int): # single-size conv
+ modules.add_module('DeformConv2d', DeformConv2d(output_filters[-1],
+ filters,
+ kernel_size=k,
+ padding=k // 2 if mdef['pad'] else 0,
+ stride=stride,
+ bias=not bn,
+ modulation=True))
+ else: # multiple-size conv
+ modules.add_module('MixConv2d', MixConv2d(in_ch=output_filters[-1],
+ out_ch=filters,
+ k=k,
+ stride=stride,
+ bias=not bn))
+
+ if bn:
+ modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4))
+ else:
+ routs.append(i) # detection output (goes into yolo layer)
+
+ if mdef['activation'] == 'leaky': # activation study https://github.com/ultralytics/yolov3/issues/441
+ modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
+ elif mdef['activation'] == 'swish':
+ modules.add_module('activation', Swish())
+ elif mdef['activation'] == 'mish':
+ modules.add_module('activation', Mish())
+ elif mdef['activation'] == 'silu':
+ modules.add_module('activation', nn.SiLU())
+
+ elif mdef['type'] == 'dropout':
+ p = mdef['probability']
+ modules = nn.Dropout(p)
+
+ elif mdef['type'] == 'avgpool':
+ modules = GAP()
+
+ elif mdef['type'] == 'silence':
+ filters = output_filters[-1]
+ modules = Silence()
+
+ elif mdef['type'] == 'scale_channels': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ScaleChannel(layers=layers)
+
+ elif mdef['type'] == 'shift_channels': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ShiftChannel(layers=layers)
+
+ elif mdef['type'] == 'shift_channels_2d': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ShiftChannel2D(layers=layers)
+
+ elif mdef['type'] == 'control_channels': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ControlChannel(layers=layers)
+
+ elif mdef['type'] == 'control_channels_2d': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ControlChannel2D(layers=layers)
+
+ elif mdef['type'] == 'alternate_channels': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1] * 2
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = AlternateChannel(layers=layers)
+
+ elif mdef['type'] == 'alternate_channels_2d': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1] * 2
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = AlternateChannel2D(layers=layers)
+
+ elif mdef['type'] == 'select_channels': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = SelectChannel(layers=layers)
+
+ elif mdef['type'] == 'select_channels_2d': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = SelectChannel2D(layers=layers)
+
+ elif mdef['type'] == 'sam': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = ScaleSpatial(layers=layers)
+
+ elif mdef['type'] == 'BatchNorm2d':
+ filters = output_filters[-1]
+ modules = nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4)
+ if i == 0 and filters == 3: # normalize RGB image
+ # imagenet mean and var https://pytorch.org/docs/stable/torchvision/models.html#classification
+ modules.running_mean = torch.tensor([0.485, 0.456, 0.406])
+ modules.running_var = torch.tensor([0.0524, 0.0502, 0.0506])
+
+ elif mdef['type'] == 'maxpool':
+ k = mdef['size'] # kernel size
+ stride = mdef['stride']
+ maxpool = nn.MaxPool2d(kernel_size=k, stride=stride, padding=(k - 1) // 2)
+ if k == 2 and stride == 1: # yolov3-tiny
+ modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1)))
+ modules.add_module('MaxPool2d', maxpool)
+ else:
+ modules = maxpool
+
+ elif mdef['type'] == 'local_avgpool':
+ k = mdef['size'] # kernel size
+ stride = mdef['stride']
+ avgpool = nn.AvgPool2d(kernel_size=k, stride=stride, padding=(k - 1) // 2)
+ if k == 2 and stride == 1: # yolov3-tiny
+ modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1)))
+ modules.add_module('AvgPool2d', avgpool)
+ else:
+ modules = avgpool
+
+ elif mdef['type'] == 'upsample':
+ if ONNX_EXPORT: # explicitly state size, avoid scale_factor
+ g = (yolo_index + 1) * 2 / 32 # gain
+ modules = nn.Upsample(size=tuple(int(x * g) for x in img_size)) # img_size = (320, 192)
+ else:
+ modules = nn.Upsample(scale_factor=mdef['stride'])
+
+ elif mdef['type'] == 'route': # nn.Sequential() placeholder for 'route' layer
+ layers = mdef['layers']
+ filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = FeatureConcat(layers=layers)
+
+ elif mdef['type'] == 'route2': # nn.Sequential() placeholder for 'route' layer
+ layers = mdef['layers']
+ filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = FeatureConcat2(layers=layers)
+
+ elif mdef['type'] == 'route3': # nn.Sequential() placeholder for 'route' layer
+ layers = mdef['layers']
+ filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = FeatureConcat3(layers=layers)
+
+ elif mdef['type'] == 'route_lhalf': # nn.Sequential() placeholder for 'route' layer
+ layers = mdef['layers']
+ filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])//2
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = FeatureConcat_l(layers=layers)
+
+ elif mdef['type'] == 'shortcut': # nn.Sequential() placeholder for 'shortcut' layer
+ layers = mdef['from']
+ filters = output_filters[-1]
+ routs.extend([i + l if l < 0 else l for l in layers])
+ modules = WeightedFeatureFusion(layers=layers, weight='weights_type' in mdef)
+
+ elif mdef['type'] == 'reorg3d': # yolov3-spp-pan-scale
+ pass
+
+ elif mdef['type'] == 'reorg': # yolov3-spp-pan-scale
+ filters = 4 * output_filters[-1]
+ modules.add_module('Reorg', Reorg())
+
+ elif mdef['type'] == 'dwt': # yolov3-spp-pan-scale
+ filters = 4 * output_filters[-1]
+ modules.add_module('DWT', DWT())
+
+ elif mdef['type'] == 'implicit_add': # yolov3-spp-pan-scale
+ filters = mdef['filters']
+ modules = ImplicitA(channel=filters)
+
+ elif mdef['type'] == 'implicit_mul': # yolov3-spp-pan-scale
+ filters = mdef['filters']
+ modules = ImplicitM(channel=filters)
+
+ elif mdef['type'] == 'implicit_cat': # yolov3-spp-pan-scale
+ filters = mdef['filters']
+ modules = ImplicitC(channel=filters)
+
+ elif mdef['type'] == 'implicit_add_2d': # yolov3-spp-pan-scale
+ channels = mdef['filters']
+ filters = mdef['atoms']
+ modules = Implicit2DA(atom=filters, channel=channels)
+
+ elif mdef['type'] == 'implicit_mul_2d': # yolov3-spp-pan-scale
+ channels = mdef['filters']
+ filters = mdef['atoms']
+ modules = Implicit2DM(atom=filters, channel=channels)
+
+ elif mdef['type'] == 'implicit_cat_2d': # yolov3-spp-pan-scale
+ channels = mdef['filters']
+ filters = mdef['atoms']
+ modules = Implicit2DC(atom=filters, channel=channels)
+
+ elif mdef['type'] == 'yolo':
+ yolo_index += 1
+ stride = [8, 16, 32, 64, 128] # P3, P4, P5, P6, P7 strides
+ if any(x in cfg for x in ['yolov4-tiny', 'fpn', 'yolov3']): # P5, P4, P3 strides
+ stride = [32, 16, 8]
+ layers = mdef['from'] if 'from' in mdef else []
+ modules = YOLOLayer(anchors=mdef['anchors'][mdef['mask']], # anchor list
+ nc=mdef['classes'], # number of classes
+ img_size=img_size, # (416, 416)
+ yolo_index=yolo_index, # 0, 1, 2...
+ layers=layers, # output layers
+ stride=stride[yolo_index])
+
+ # Initialize preceding Conv2d() bias (https://arxiv.org/pdf/1708.02002.pdf section 3.3)
+ try:
+ j = layers[yolo_index] if 'from' in mdef else -2
+ bias_ = module_list[j][0].bias # shape(255,)
+ bias = bias_[:modules.no * modules.na].view(modules.na, -1) # shape(3,85)
+ #bias[:, 4] += -4.5 # obj
+ bias.data[:, 4] += math.log(8 / (640 / stride[yolo_index]) ** 2) # obj (8 objects per 640 image)
+ bias.data[:, 5:] += math.log(0.6 / (modules.nc - 0.99)) # cls (sigmoid(p) = 1/nc)
+ module_list[j][0].bias = torch.nn.Parameter(bias_, requires_grad=bias_.requires_grad)
+
+ #j = [-2, -5, -8]
+ #for sj in j:
+ # bias_ = module_list[sj][0].bias
+ # bias = bias_[:modules.no * 1].view(1, -1)
+ # bias.data[:, 4] += math.log(8 / (640 / stride[yolo_index]) ** 2)
+ # bias.data[:, 5:] += math.log(0.6 / (modules.nc - 0.99))
+ # module_list[sj][0].bias = torch.nn.Parameter(bias_, requires_grad=bias_.requires_grad)
+ except:
+ print('WARNING: smart bias initialization failure.')
+
+ elif mdef['type'] == 'jde':
+ yolo_index += 1
+ stride = [8, 16, 32, 64, 128] # P3, P4, P5, P6, P7 strides
+ if any(x in cfg for x in ['yolov4-tiny', 'fpn', 'yolov3']): # P5, P4, P3 strides
+ stride = [32, 16, 8]
+ layers = mdef['from'] if 'from' in mdef else []
+ modules = JDELayer(anchors=mdef['anchors'][mdef['mask']], # anchor list
+ nc=mdef['classes'], # number of classes
+ img_size=img_size, # (416, 416)
+ yolo_index=yolo_index, # 0, 1, 2...
+ layers=layers, # output layers
+ stride=stride[yolo_index])
+
+ # Initialize preceding Conv2d() bias (https://arxiv.org/pdf/1708.02002.pdf section 3.3)
+ try:
+ j = layers[yolo_index] if 'from' in mdef else -1
+ bias_ = module_list[j][0].bias # shape(255,)
+ bias = bias_[:modules.no * modules.na].view(modules.na, -1) # shape(3,85)
+ #bias[:, 4] += -4.5 # obj
+ bias.data[:, 4] += math.log(8 / (640 / stride[yolo_index]) ** 2) # obj (8 objects per 640 image)
+ bias.data[:, 5:] += math.log(0.6 / (modules.nc - 0.99)) # cls (sigmoid(p) = 1/nc)
+ module_list[j][0].bias = torch.nn.Parameter(bias_, requires_grad=bias_.requires_grad)
+ except:
+ print('WARNING: smart bias initialization failure.')
+
+ else:
+ print('Warning: Unrecognized Layer Type: ' + mdef['type'])
+
+ # Register module list and number of output filters
+ module_list.append(modules)
+ output_filters.append(filters)
+
+ routs_binary = [False] * (i + 1)
+ for i in routs:
+ routs_binary[i] = True
+ return module_list, routs_binary
+
+
+class YOLOLayer(nn.Module):
+ def __init__(self, anchors, nc, img_size, yolo_index, layers, stride):
+ super(YOLOLayer, self).__init__()
+ self.anchors = torch.Tensor(anchors)
+ self.index = yolo_index # index of this layer in layers
+ self.layers = layers # model output layer indices
+ self.stride = stride # layer stride
+ self.nl = len(layers) # number of output layers (3)
+ self.na = len(anchors) # number of anchors (3)
+ self.nc = nc # number of classes (80)
+ self.no = nc + 5 # number of outputs (85)
+ self.nx, self.ny, self.ng = 0, 0, 0 # initialize number of x, y gridpoints
+ self.anchor_vec = self.anchors / self.stride
+ self.anchor_wh = self.anchor_vec.view(1, self.na, 1, 1, 2)
+
+ if ONNX_EXPORT:
+ self.training = False
+ self.create_grids((img_size[1] // stride, img_size[0] // stride)) # number x, y grid points
+
+ def create_grids(self, ng=(13, 13), device='cpu'):
+ self.nx, self.ny = ng # x and y grid size
+ self.ng = torch.tensor(ng, dtype=torch.float)
+
+ # build xy offsets
+ if not self.training:
+ yv, xv = torch.meshgrid([torch.arange(self.ny, device=device), torch.arange(self.nx, device=device)])
+ self.grid = torch.stack((xv, yv), 2).view((1, 1, self.ny, self.nx, 2)).float()
+
+ if self.anchor_vec.device != device:
+ self.anchor_vec = self.anchor_vec.to(device)
+ self.anchor_wh = self.anchor_wh.to(device)
+
+ def forward(self, p, out):
+ ASFF = False # https://arxiv.org/abs/1911.09516
+ if ASFF:
+ i, n = self.index, self.nl # index in layers, number of layers
+ p = out[self.layers[i]]
+ bs, _, ny, nx = p.shape # bs, 255, 13, 13
+ if (self.nx, self.ny) != (nx, ny):
+ self.create_grids((nx, ny), p.device)
+
+ # outputs and weights
+ # w = F.softmax(p[:, -n:], 1) # normalized weights
+ w = torch.sigmoid(p[:, -n:]) * (2 / n) # sigmoid weights (faster)
+ # w = w / w.sum(1).unsqueeze(1) # normalize across layer dimension
+
+ # weighted ASFF sum
+ p = out[self.layers[i]][:, :-n] * w[:, i:i + 1]
+ for j in range(n):
+ if j != i:
+ p += w[:, j:j + 1] * \
+ F.interpolate(out[self.layers[j]][:, :-n], size=[ny, nx], mode='bilinear', align_corners=False)
+
+ elif ONNX_EXPORT:
+ bs = 1 # batch size
+ else:
+ bs, _, ny, nx = p.shape # bs, 255, 13, 13
+ if (self.nx, self.ny) != (nx, ny):
+ self.create_grids((nx, ny), p.device)
+
+ # p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors, grid, grid, classes + xywh)
+ p = p.view(bs, self.na, self.no, self.ny, self.nx).permute(0, 1, 3, 4, 2).contiguous() # prediction
+
+ if self.training:
+ return p
+
+ elif ONNX_EXPORT:
+ # Avoid broadcasting for ANE operations
+ m = self.na * self.nx * self.ny
+ ng = 1. / self.ng.repeat(m, 1)
+ grid = self.grid.repeat(1, self.na, 1, 1, 1).view(m, 2)
+ anchor_wh = self.anchor_wh.repeat(1, 1, self.nx, self.ny, 1).view(m, 2) * ng
+
+ p = p.view(m, self.no)
+ xy = torch.sigmoid(p[:, 0:2]) + grid # x, y
+ wh = torch.exp(p[:, 2:4]) * anchor_wh # width, height
+ p_cls = torch.sigmoid(p[:, 4:5]) if self.nc == 1 else \
+ torch.sigmoid(p[:, 5:self.no]) * torch.sigmoid(p[:, 4:5]) # conf
+ return p_cls, xy * ng, wh
+
+ else: # inference
+ io = p.sigmoid()
+ io[..., :2] = (io[..., :2] * 2. - 0.5 + self.grid)
+ io[..., 2:4] = (io[..., 2:4] * 2) ** 2 * self.anchor_wh
+ io[..., :4] *= self.stride
+ #io = p.clone() # inference output
+ #io[..., :2] = torch.sigmoid(io[..., :2]) + self.grid # xy
+ #io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh # wh yolo method
+ #io[..., :4] *= self.stride
+ #torch.sigmoid_(io[..., 4:])
+ return io.view(bs, -1, self.no), p # view [1, 3, 13, 13, 85] as [1, 507, 85]
+
+
+class JDELayer(nn.Module):
+ def __init__(self, anchors, nc, img_size, yolo_index, layers, stride):
+ super(JDELayer, self).__init__()
+ self.anchors = torch.Tensor(anchors)
+ self.index = yolo_index # index of this layer in layers
+ self.layers = layers # model output layer indices
+ self.stride = stride # layer stride
+ self.nl = len(layers) # number of output layers (3)
+ self.na = len(anchors) # number of anchors (3)
+ self.nc = nc # number of classes (80)
+ self.no = nc + 5 # number of outputs (85)
+ self.nx, self.ny, self.ng = 0, 0, 0 # initialize number of x, y gridpoints
+ self.anchor_vec = self.anchors / self.stride
+ self.anchor_wh = self.anchor_vec.view(1, self.na, 1, 1, 2)
+
+ if ONNX_EXPORT:
+ self.training = False
+ self.create_grids((img_size[1] // stride, img_size[0] // stride)) # number x, y grid points
+
+ def create_grids(self, ng=(13, 13), device='cpu'):
+ self.nx, self.ny = ng # x and y grid size
+ self.ng = torch.tensor(ng, dtype=torch.float)
+
+ # build xy offsets
+ if not self.training:
+ yv, xv = torch.meshgrid([torch.arange(self.ny, device=device), torch.arange(self.nx, device=device)])
+ self.grid = torch.stack((xv, yv), 2).view((1, 1, self.ny, self.nx, 2)).float()
+
+ if self.anchor_vec.device != device:
+ self.anchor_vec = self.anchor_vec.to(device)
+ self.anchor_wh = self.anchor_wh.to(device)
+
+ def forward(self, p, out):
+ ASFF = False # https://arxiv.org/abs/1911.09516
+ if ASFF:
+ i, n = self.index, self.nl # index in layers, number of layers
+ p = out[self.layers[i]]
+ bs, _, ny, nx = p.shape # bs, 255, 13, 13
+ if (self.nx, self.ny) != (nx, ny):
+ self.create_grids((nx, ny), p.device)
+
+ # outputs and weights
+ # w = F.softmax(p[:, -n:], 1) # normalized weights
+ w = torch.sigmoid(p[:, -n:]) * (2 / n) # sigmoid weights (faster)
+ # w = w / w.sum(1).unsqueeze(1) # normalize across layer dimension
+
+ # weighted ASFF sum
+ p = out[self.layers[i]][:, :-n] * w[:, i:i + 1]
+ for j in range(n):
+ if j != i:
+ p += w[:, j:j + 1] * \
+ F.interpolate(out[self.layers[j]][:, :-n], size=[ny, nx], mode='bilinear', align_corners=False)
+
+ elif ONNX_EXPORT:
+ bs = 1 # batch size
+ else:
+ bs, _, ny, nx = p.shape # bs, 255, 13, 13
+ if (self.nx, self.ny) != (nx, ny):
+ self.create_grids((nx, ny), p.device)
+
+ # p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors, grid, grid, classes + xywh)
+ p = p.view(bs, self.na, self.no, self.ny, self.nx).permute(0, 1, 3, 4, 2).contiguous() # prediction
+
+ if self.training:
+ return p
+
+ elif ONNX_EXPORT:
+ # Avoid broadcasting for ANE operations
+ m = self.na * self.nx * self.ny
+ ng = 1. / self.ng.repeat(m, 1)
+ grid = self.grid.repeat(1, self.na, 1, 1, 1).view(m, 2)
+ anchor_wh = self.anchor_wh.repeat(1, 1, self.nx, self.ny, 1).view(m, 2) * ng
+
+ p = p.view(m, self.no)
+ xy = torch.sigmoid(p[:, 0:2]) + grid # x, y
+ wh = torch.exp(p[:, 2:4]) * anchor_wh # width, height
+ p_cls = torch.sigmoid(p[:, 4:5]) if self.nc == 1 else \
+ torch.sigmoid(p[:, 5:self.no]) * torch.sigmoid(p[:, 4:5]) # conf
+ return p_cls, xy * ng, wh
+
+ else: # inference
+ #io = p.sigmoid()
+ #io[..., :2] = (io[..., :2] * 2. - 0.5 + self.grid)
+ #io[..., 2:4] = (io[..., 2:4] * 2) ** 2 * self.anchor_wh
+ #io[..., :4] *= self.stride
+ io = p.clone() # inference output
+ io[..., :2] = torch.sigmoid(io[..., :2]) * 2. - 0.5 + self.grid # xy
+ io[..., 2:4] = (torch.sigmoid(io[..., 2:4]) * 2) ** 2 * self.anchor_wh # wh yolo method
+ io[..., :4] *= self.stride
+ io[..., 4:] = F.softmax(io[..., 4:])
+ return io.view(bs, -1, self.no), p # view [1, 3, 13, 13, 85] as [1, 507, 85]
+
+class Darknet(nn.Module):
+ # YOLOv3 object detection model
+
+ def __init__(self, cfg, img_size=(416, 416), verbose=False):
+ super(Darknet, self).__init__()
+
+ self.module_defs = parse_model_cfg(cfg)
+ self.module_list, self.routs = create_modules(self.module_defs, img_size, cfg)
+ self.yolo_layers = get_yolo_layers(self)
+ # torch_utils.initialize_weights(self)
+
+ # Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
+ self.version = np.array([0, 2, 5], dtype=np.int32) # (int32) version info: major, minor, revision
+ self.seen = np.array([0], dtype=np.int64) # (int64) number of images seen during training
+ self.info(verbose) if not ONNX_EXPORT else None # print model description
+
+ def forward(self, x, augment=False, verbose=False):
+
+ if not augment:
+ return self.forward_once(x)
+ else: # Augment images (inference and test only) https://github.com/ultralytics/yolov3/issues/931
+ img_size = x.shape[-2:] # height, width
+ s = [0.83, 0.67] # scales
+ y = []
+ for i, xi in enumerate((x,
+ torch_utils.scale_img(x.flip(3), s[0], same_shape=False), # flip-lr and scale
+ torch_utils.scale_img(x, s[1], same_shape=False), # scale
+ )):
+ # cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
+ y.append(self.forward_once(xi)[0])
+
+ y[1][..., :4] /= s[0] # scale
+ y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
+ y[2][..., :4] /= s[1] # scale
+
+ # for i, yi in enumerate(y): # coco small, medium, large = < 32**2 < 96**2 <
+ # area = yi[..., 2:4].prod(2)[:, :, None]
+ # if i == 1:
+ # yi *= (area < 96. ** 2).float()
+ # elif i == 2:
+ # yi *= (area > 32. ** 2).float()
+ # y[i] = yi
+
+ y = torch.cat(y, 1)
+ return y, None
+
+ def forward_once(self, x, augment=False, verbose=False):
+ img_size = x.shape[-2:] # height, width
+ yolo_out, out = [], []
+ if verbose:
+ print('0', x.shape)
+ str = ''
+
+ # Augment images (inference and test only)
+ if augment: # https://github.com/ultralytics/yolov3/issues/931
+ nb = x.shape[0] # batch size
+ s = [0.83, 0.67] # scales
+ x = torch.cat((x,
+ torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
+ torch_utils.scale_img(x, s[1]), # scale
+ ), 0)
+
+ for i, module in enumerate(self.module_list):
+ name = module.__class__.__name__
+ #print(name)
+ if name in ['WeightedFeatureFusion', 'FeatureConcat', 'FeatureConcat2', 'FeatureConcat3', 'FeatureConcat_l', 'ScaleChannel', 'ShiftChannel', 'ShiftChannel2D', 'ControlChannel', 'ControlChannel2D', 'AlternateChannel', 'AlternateChannel2D', 'SelectChannel', 'SelectChannel2D', 'ScaleSpatial']: # sum, concat
+ if verbose:
+ l = [i - 1] + module.layers # layers
+ sh = [list(x.shape)] + [list(out[i].shape) for i in module.layers] # shapes
+ str = ' >> ' + ' + '.join(['layer %g %s' % x for x in zip(l, sh)])
+ x = module(x, out) # WeightedFeatureFusion(), FeatureConcat()
+ elif name in ['ImplicitA', 'ImplicitM', 'ImplicitC', 'Implicit2DA', 'Implicit2DM', 'Implicit2DC']:
+ x = module()
+ elif name == 'YOLOLayer':
+ yolo_out.append(module(x, out))
+ elif name == 'JDELayer':
+ yolo_out.append(module(x, out))
+ else: # run module directly, i.e. mtype = 'convolutional', 'upsample', 'maxpool', 'batchnorm2d' etc.
+ #print(module)
+ #print(x.shape)
+ x = module(x)
+
+ out.append(x if self.routs[i] else [])
+ if verbose:
+ print('%g/%g %s -' % (i, len(self.module_list), name), list(x.shape), str)
+ str = ''
+
+ if self.training: # train
+ return yolo_out
+ elif ONNX_EXPORT: # export
+ x = [torch.cat(x, 0) for x in zip(*yolo_out)]
+ return x[0], torch.cat(x[1:3], 1) # scores, boxes: 3780x80, 3780x4
+ else: # inference or test
+ x, p = zip(*yolo_out) # inference output, training output
+ x = torch.cat(x, 1) # cat yolo outputs
+ if augment: # de-augment results
+ x = torch.split(x, nb, dim=0)
+ x[1][..., :4] /= s[0] # scale
+ x[1][..., 0] = img_size[1] - x[1][..., 0] # flip lr
+ x[2][..., :4] /= s[1] # scale
+ x = torch.cat(x, 1)
+ return x, p
+
+ def fuse(self):
+ # Fuse Conv2d + BatchNorm2d layers throughout model
+ print('Fusing layers...')
+ fused_list = nn.ModuleList()
+ for a in list(self.children())[0]:
+ if isinstance(a, nn.Sequential):
+ for i, b in enumerate(a):
+ if isinstance(b, nn.modules.batchnorm.BatchNorm2d):
+ # fuse this bn layer with the previous conv2d layer
+ conv = a[i - 1]
+ fused = torch_utils.fuse_conv_and_bn(conv, b)
+ a = nn.Sequential(fused, *list(a.children())[i + 1:])
+ break
+ fused_list.append(a)
+ self.module_list = fused_list
+ self.info() if not ONNX_EXPORT else None # yolov3-spp reduced from 225 to 152 layers
+
+ def info(self, verbose=False):
+ torch_utils.model_info(self, verbose)
+
+
+def get_yolo_layers(model):
+ return [i for i, m in enumerate(model.module_list) if m.__class__.__name__ in ['YOLOLayer', 'JDELayer']] # [89, 101, 113]
+
+
+def load_darknet_weights(self, weights, cutoff=-1):
+ # Parses and loads the weights stored in 'weights'
+
+ # Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
+ file = Path(weights).name
+ if file == 'darknet53.conv.74':
+ cutoff = 75
+ elif file == 'yolov3-tiny.conv.15':
+ cutoff = 15
+
+ # Read weights file
+ with open(weights, 'rb') as f:
+ # Read Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
+ self.version = np.fromfile(f, dtype=np.int32, count=3) # (int32) version info: major, minor, revision
+ self.seen = np.fromfile(f, dtype=np.int64, count=1) # (int64) number of images seen during training
+
+ weights = np.fromfile(f, dtype=np.float32) # the rest are weights
+
+ ptr = 0
+ for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
+ if mdef['type'] == 'convolutional':
+ conv = module[0]
+ if mdef['batch_normalize']:
+ # Load BN bias, weights, running mean and running variance
+ bn = module[1]
+ nb = bn.bias.numel() # number of biases
+ # Bias
+ bn.bias.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.bias))
+ ptr += nb
+ # Weight
+ bn.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.weight))
+ ptr += nb
+ # Running Mean
+ bn.running_mean.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_mean))
+ ptr += nb
+ # Running Var
+ bn.running_var.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_var))
+ ptr += nb
+ else:
+ # Load conv. bias
+ nb = conv.bias.numel()
+ conv_b = torch.from_numpy(weights[ptr:ptr + nb]).view_as(conv.bias)
+ conv.bias.data.copy_(conv_b)
+ ptr += nb
+ # Load conv. weights
+ nw = conv.weight.numel() # number of weights
+ conv.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nw]).view_as(conv.weight))
+ ptr += nw
+
+
+def save_weights(self, path='model.weights', cutoff=-1):
+ # Converts a PyTorch model to Darket format (*.pt to *.weights)
+ # Note: Does not work if model.fuse() is applied
+ with open(path, 'wb') as f:
+ # Write Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
+ self.version.tofile(f) # (int32) version info: major, minor, revision
+ self.seen.tofile(f) # (int64) number of images seen during training
+
+ # Iterate through layers
+ for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
+ if mdef['type'] == 'convolutional':
+ conv_layer = module[0]
+ # If batch norm, load bn first
+ if mdef['batch_normalize']:
+ bn_layer = module[1]
+ bn_layer.bias.data.cpu().numpy().tofile(f)
+ bn_layer.weight.data.cpu().numpy().tofile(f)
+ bn_layer.running_mean.data.cpu().numpy().tofile(f)
+ bn_layer.running_var.data.cpu().numpy().tofile(f)
+ # Load conv bias
+ else:
+ conv_layer.bias.data.cpu().numpy().tofile(f)
+ # Load conv weights
+ conv_layer.weight.data.cpu().numpy().tofile(f)
+
+
+def convert(cfg='cfg/yolov3-spp.cfg', weights='weights/yolov3-spp.weights', saveto='converted.weights'):
+ # Converts between PyTorch and Darknet format per extension (i.e. *.weights convert to *.pt and vice versa)
+ # from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')
+
+ # Initialize model
+ model = Darknet(cfg)
+ ckpt = torch.load(weights) # load checkpoint
+ try:
+ ckpt['model'] = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
+ model.load_state_dict(ckpt['model'], strict=False)
+ save_weights(model, path=saveto, cutoff=-1)
+ except KeyError as e:
+ print(e)
+
+def attempt_download(weights):
+ # Attempt to download pretrained weights if not found locally
+ weights = weights.strip()
+ msg = weights + ' missing, try downloading from https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0'
+
+ if len(weights) > 0 and not os.path.isfile(weights):
+ d = {''}
+
+ file = Path(weights).name
+ if file in d:
+ r = gdrive_download(id=d[file], name=weights)
+ else: # download from pjreddie.com
+ url = 'https://pjreddie.com/media/files/' + file
+ print('Downloading ' + url)
+ r = os.system('curl -f ' + url + ' -o ' + weights)
+
+ # Error check
+ if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
+ os.system('rm ' + weights) # remove partial downloads
+ raise Exception(msg)
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bf3073ea9736ca20742d506b41b8e3e20846b9af
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,33 @@
+# pip install -qr requirements.txt
+
+# base ----------------------------------------
+Cython
+matplotlib>=3.2.2
+numpy>=1.18.5
+opencv-python>=4.1.2
+Pillow
+PyYAML>=5.3.1
+scipy>=1.4.1
+tensorboard>=1.5
+torch==1.7.0
+torchvision==0.8.1
+tqdm>=4.41.0
+
+# logging -------------------------------------
+# wandb
+
+# plotting ------------------------------------
+seaborn>=0.11.0
+pandas
+
+# export --------------------------------------
+# coremltools>=4.1
+# onnx>=1.8.1
+# scikit-learn==0.19.2 # for coreml quantization
+
+# extras --------------------------------------
+thop # FLOPS computation
+pycocotools==2.0 # COCO mAP
+
+
+gdown
\ No newline at end of file
diff --git a/scripts/get_coco.sh b/scripts/get_coco.sh
new file mode 100644
index 0000000000000000000000000000000000000000..cb3c14a8a53f34c31300a520f50e243d69679f66
--- /dev/null
+++ b/scripts/get_coco.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# Script credit to https://github.com/ultralytics/yolov5
+# COCO 2017 dataset http://cocodataset.org
+# Download command: bash scripts/get_coco.sh
+# Default dataset location is next to /yolor:
+# /parent_folder
+# /coco
+# /yolor
+
+# Download/unzip labels
+d='../' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+
+# Download/unzip images
+d='../coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+f1='train2017.zip' # 19G, 118k images
+f2='val2017.zip' # 1G, 5k images
+f3='test2017.zip' # 7G, 41k images (optional)
+for f in $f1 $f2 $f3; do
+ echo 'Downloading' $url$f '...'
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+done
+wait # finish background tasks
diff --git a/scripts/get_pretrain.sh b/scripts/get_pretrain.sh
new file mode 100644
index 0000000000000000000000000000000000000000..6ce06afd9330b54e8108a83642dff2ccaffdd2df
--- /dev/null
+++ b/scripts/get_pretrain.sh
@@ -0,0 +1,7 @@
+curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76" > /dev/null
+curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=1Tdn3yqpZ79X7R1Ql0zNlNScB1Dv9Fp76" -o yolor_p6.pt
+rm ./cookie
+
+curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=1UflcHlN5ERPdhahMivQYCbWWw7d2wY7U" > /dev/null
+curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=1UflcHlN5ERPdhahMivQYCbWWw7d2wY7U" -o yolor_w6.pt
+rm ./cookie
diff --git a/test.py b/test.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4c7a27f1291d480c9da4e109b0ac9c16c634ca4
--- /dev/null
+++ b/test.py
@@ -0,0 +1,344 @@
+import argparse
+import glob
+import json
+import os
+from pathlib import Path
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils.google_utils import attempt_load
+from utils.datasets import create_dataloader
+from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \
+ non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, clip_coords, set_logging, increment_path
+from utils.loss import compute_loss
+from utils.metrics import ap_per_class
+from utils.plots import plot_images, output_to_target
+from utils.torch_utils import select_device, time_synchronized
+
+from models.models import *
+
+def load_classes(path):
+ # Loads *.names file at 'path'
+ with open(path, 'r') as f:
+ names = f.read().split('\n')
+ return list(filter(None, names)) # filter removes empty strings (such as last line)
+
+
+def test(data,
+ weights=None,
+ batch_size=16,
+ imgsz=640,
+ conf_thres=0.001,
+ iou_thres=0.6, # for NMS
+ save_json=False,
+ single_cls=False,
+ augment=False,
+ verbose=False,
+ model=None,
+ dataloader=None,
+ save_dir=Path(''), # for saving images
+ save_txt=False, # for auto-labelling
+ save_conf=False,
+ plots=True,
+ log_imgs=0): # number of logged images
+
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device = next(model.parameters()).device # get model device
+
+ else: # called directly
+ set_logging()
+ device = select_device(opt.device, batch_size=batch_size)
+ save_txt = opt.save_txt # save *.txt labels
+
+ # Directories
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = Darknet(opt.cfg).to(device)
+
+ # load model
+ try:
+ ckpt = torch.load(weights[0], map_location=device) # load checkpoint
+ ckpt['model'] = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
+ model.load_state_dict(ckpt['model'], strict=False)
+ except:
+ load_darknet_weights(model, weights[0])
+ imgsz = check_img_size(imgsz, s=64) # check img_size
+
+ # Half
+ half = device.type != 'cpu' # half precision only supported on CUDA
+ if half:
+ model.half()
+
+ # Configure
+ model.eval()
+ is_coco = data.endswith('coco.yaml') # is COCO dataset
+ with open(data) as f:
+ data = yaml.load(f, Loader=yaml.FullLoader) # model dict
+ check_dataset(data) # check
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Logging
+ log_imgs, wandb = min(log_imgs, 100), None # ceil
+ try:
+ import wandb # Weights & Biases
+ except ImportError:
+ log_imgs = 0
+
+ # Dataloader
+ if not training:
+ img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
+ _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
+ path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
+ dataloader = create_dataloader(path, imgsz, batch_size, 64, opt, pad=0.5, rect=True)[0]
+
+ seen = 0
+ try:
+ names = model.names if hasattr(model, 'names') else model.module.names
+ except:
+ names = load_classes(opt.names)
+ coco91class = coco80_to_coco91_class()
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
+ loss = torch.zeros(3, device=device)
+ jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
+ img = img.to(device, non_blocking=True)
+ img = img.half() if half else img.float() # uint8 to fp16/32
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
+ targets = targets.to(device)
+ nb, _, height, width = img.shape # batch size, channels, height, width
+ whwh = torch.Tensor([width, height, width, height]).to(device)
+
+ # Disable gradients
+ with torch.no_grad():
+ # Run model
+ t = time_synchronized()
+ inf_out, train_out = model(img, augment=augment) # inference and training outputs
+ t0 += time_synchronized() - t
+
+ # Compute loss
+ if training: # if model has loss hyperparameters
+ loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
+
+ # Run NMS
+ t = time_synchronized()
+ output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
+ t1 += time_synchronized() - t
+
+ # Statistics per image
+ for si, pred in enumerate(output):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl = len(labels)
+ tcls = labels[:, 0].tolist() if nl else [] # target class
+ seen += 1
+
+ if len(pred) == 0:
+ if nl:
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+ continue
+
+ # Append to text file
+ path = Path(paths[si])
+ if save_txt:
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
+ x = pred.clone()
+ x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
+ for *xyxy, conf, cls in x:
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ # W&B logging
+ if plots and len(wandb_images) < log_imgs:
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+ "class_id": int(cls),
+ "box_caption": "%s %.3f" % (names[cls], conf),
+ "scores": {"class_score": conf},
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}}
+ wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
+
+ # Clip boxes to image bounds
+ clip_coords(pred, (height, width))
+
+ # Append to pycocotools JSON dictionary
+ if save_json:
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = pred[:, :4].clone() # xyxy
+ scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
+ box = xyxy2xywh(box) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ for p, b in zip(pred.tolist(), box.tolist()):
+ jdict.append({'image_id': image_id,
+ 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5)})
+
+ # Assign all predictions as incorrect
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
+ if nl:
+ detected = [] # target indices
+ tcls_tensor = labels[:, 0]
+
+ # target boxes
+ tbox = xywh2xyxy(labels[:, 1:5]) * whwh
+
+ # Per target class
+ for cls in torch.unique(tcls_tensor):
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
+
+ # Search for detections
+ if pi.shape[0]:
+ # Prediction to target ious
+ ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
+
+ # Append detections
+ detected_set = set()
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
+ d = ti[i[j]] # detected target
+ if d.item() not in detected_set:
+ detected_set.add(d.item())
+ detected.append(d)
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
+ if len(detected) == nl: # all targets already located in image
+ break
+
+ # Append statistics (correct, conf, pcls, tcls)
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
+
+ # Plot images
+ if plots and batch_i < 3:
+ f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename
+ plot_images(img, targets, paths, f, names) # labels
+ f = save_dir / f'test_batch{batch_i}_pred.jpg'
+ plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
+
+ # Compute statistics
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png')
+ p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
+ else:
+ nt = torch.zeros(1)
+
+ # W&B logging
+ if plots and wandb:
+ wandb.log({"Images": wandb_images})
+ wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]})
+
+ # Print results
+ pf = '%20s' + '%12.3g' * 6 # print format
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+
+ # Print results per class
+ if verbose and nc > 1 and len(stats):
+ for i, c in enumerate(ap_class):
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+ # Print speeds
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
+ if not training:
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ eval = COCOeval(anno, pred, 'bbox')
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ except Exception as e:
+ print('ERROR: pycocotools unable to run: %s' % e)
+
+ # Return results
+ if not training:
+ print('Results saved to %s' % save_dir)
+ model.float() # for training
+ maps = np.zeros(nc) + map
+ for i, c in enumerate(ap_class):
+ maps[c] = ap[i]
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(prog='test.py')
+ parser.add_argument('--weights', nargs='+', type=str, default='yolor_p6.pt', help='model.pt path(s)')
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
+ parser.add_argument('--img-size', type=int, default=1280, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
+ parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
+ parser.add_argument('--project', default='runs/test', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--cfg', type=str, default='cfg/yolor_p6.cfg', help='*.cfg path')
+ parser.add_argument('--names', type=str, default='data/coco.names', help='*.cfg path')
+ opt = parser.parse_args()
+ opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.data = check_file(opt.data) # check file
+ print(opt)
+
+ if opt.task in ['val', 'test']: # run normally
+ test(opt.data,
+ opt.weights,
+ opt.batch_size,
+ opt.img_size,
+ opt.conf_thres,
+ opt.iou_thres,
+ opt.save_json,
+ opt.single_cls,
+ opt.augment,
+ opt.verbose,
+ save_txt=opt.save_txt,
+ save_conf=opt.save_conf,
+ )
+
+ elif opt.task == 'study': # run over a range of settings and save/plot
+ for weights in ['yolor_p6.pt', 'yolor_w6.pt']:
+ f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
+ x = list(range(320, 800, 64)) # x axis
+ y = [] # y axis
+ for i in x: # img-size
+ print('\nRunning %s point %s...' % (f, i))
+ r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ # utils.general.plot_study_txt(f, x) # plot
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..b920bf268cc2208c0300946f563a775a0be1e3e7
--- /dev/null
+++ b/train.py
@@ -0,0 +1,619 @@
+import argparse
+import logging
+import math
+import os
+import random
+import time
+from pathlib import Path
+from warnings import warn
+
+import numpy as np
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+import torch.optim.lr_scheduler as lr_scheduler
+import torch.utils.data
+import yaml
+from torch.cuda import amp
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+import test # import test.py to get mAP after each epoch
+#from models.yolo import Model
+from models.models import *
+from utils.autoanchor import check_anchors
+from utils.datasets import create_dataloader
+from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
+ fitness, fitness_p, fitness_r, fitness_ap50, fitness_ap, fitness_f, strip_optimizer, get_latest_run,\
+ check_dataset, check_file, check_git_status, check_img_size, print_mutation, set_logging
+from utils.google_utils import attempt_download
+from utils.loss import compute_loss
+from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
+from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
+
+logger = logging.getLogger(__name__)
+
+try:
+ import wandb
+except ImportError:
+ wandb = None
+ logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
+
+def train(hyp, opt, device, tb_writer=None, wandb=None):
+ logger.info(f'Hyperparameters {hyp}')
+ save_dir, epochs, batch_size, total_batch_size, weights, rank = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
+
+ # Directories
+ wdir = save_dir / 'weights'
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
+ last = wdir / 'last.pt'
+ best = wdir / 'best.pt'
+ results_file = save_dir / 'results.txt'
+
+ # Save run settings
+ with open(save_dir / 'hyp.yaml', 'w') as f:
+ yaml.dump(hyp, f, sort_keys=False)
+ with open(save_dir / 'opt.yaml', 'w') as f:
+ yaml.dump(vars(opt), f, sort_keys=False)
+
+ # Configure
+ plots = not opt.evolve # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(2 + rank)
+ with open(opt.data) as f:
+ data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
+ with torch_distributed_zero_first(rank):
+ check_dataset(data_dict) # check
+ train_path = data_dict['train']
+ test_path = data_dict['val']
+ nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
+
+ # Model
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(rank):
+ attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
+ model = Darknet(opt.cfg).to(device) # create
+ state_dict = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
+ model.load_state_dict(state_dict, strict=False)
+ print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
+ else:
+ model = Darknet(opt.cfg).to(device) # create
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
+
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
+ for k, v in dict(model.named_parameters()).items():
+ if '.bias' in k:
+ pg2.append(v) # biases
+ elif 'Conv2d.weight' in k:
+ pg1.append(v) # apply weight_decay
+ elif 'm.weight' in k:
+ pg1.append(v) # apply weight_decay
+ elif 'w.weight' in k:
+ pg1.append(v) # apply weight_decay
+ else:
+ pg0.append(v) # all else
+
+ if opt.adam:
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
+ else:
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
+
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
+ del pg0, pg1, pg2
+
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
+ lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # Logging
+ if wandb and wandb.run is None:
+ opt.hyp = hyp # add hyperparameters
+ wandb_run = wandb.init(config=opt, resume="allow",
+ project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
+ name=save_dir.stem,
+ id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
+
+ # Resume
+ start_epoch, best_fitness = 0, 0.0
+ best_fitness_p, best_fitness_r, best_fitness_ap50, best_fitness_ap, best_fitness_f = 0.0, 0.0, 0.0, 0.0, 0.0
+ if pretrained:
+ # Optimizer
+ if ckpt['optimizer'] is not None:
+ optimizer.load_state_dict(ckpt['optimizer'])
+ best_fitness = ckpt['best_fitness']
+ best_fitness_p = ckpt['best_fitness_p']
+ best_fitness_r = ckpt['best_fitness_r']
+ best_fitness_ap50 = ckpt['best_fitness_ap50']
+ best_fitness_ap = ckpt['best_fitness_ap']
+ best_fitness_f = ckpt['best_fitness_f']
+
+ # Results
+ if ckpt.get('training_results') is not None:
+ with open(results_file, 'w') as file:
+ file.write(ckpt['training_results']) # write results.txt
+
+ # Epochs
+ start_epoch = ckpt['epoch'] + 1
+ if opt.resume:
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
+ if epochs < start_epoch:
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
+ (weights, ckpt['epoch'], epochs))
+ epochs += ckpt['epoch'] # finetune additional epochs
+
+ del ckpt, state_dict
+
+ # Image sizes
+ gs = 64 #int(max(model.stride)) # grid size (max stride)
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
+
+ # DP mode
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and rank != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ logger.info('Using SyncBatchNorm()')
+
+ # EMA
+ ema = ModelEMA(model) if rank in [-1, 0] else None
+
+ # DDP mode
+ if cuda and rank != -1:
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
+
+ # Trainloader
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
+ rank=rank, world_size=opt.world_size, workers=opt.workers)
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
+ nb = len(dataloader) # number of batches
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
+
+ # Process 0
+ if rank in [-1, 0]:
+ ema.updates = start_epoch * nb // accumulate # set EMA updates
+ testloader = create_dataloader(test_path, imgsz_test, batch_size*2, gs, opt,
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
+ rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
+
+ if not opt.resume:
+ labels = np.concatenate(dataset.labels, 0)
+ c = torch.tensor(labels[:, 0]) # classes
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
+ # model._initialize_biases(cf.to(device))
+ if plots:
+ plot_labels(labels, save_dir=save_dir)
+ if tb_writer:
+ tb_writer.add_histogram('classes', c, 0)
+ if wandb:
+ wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})
+
+ # Anchors
+ # if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
+
+ # Model parameters
+ hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = amp.GradScaler(enabled=cuda)
+ logger.info('Image sizes %g train, %g test\n'
+ 'Using %g dataloader workers\nLogging results to %s\n'
+ 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
+
+ torch.save(model, wdir / 'init.pt')
+
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ model.train()
+
+ # Update image weights (optional)
+ if opt.image_weights:
+ # Generate indices
+ if rank in [-1, 0]:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ # Broadcast if DDP
+ if rank != -1:
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
+ dist.broadcast(indices, 0)
+ if rank != 0:
+ dataset.indices = indices.cpu().numpy()
+
+ # Update mosaic border
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(4, device=device) # mean losses
+ if rank != -1:
+ dataloader.sampler.set_epoch(epoch)
+ pbar = enumerate(dataloader)
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
+ if rank in [-1, 0]:
+ pbar = tqdm(pbar, total=nb) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with amp.autocast(enabled=cuda):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
+ if rank != -1:
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize
+ if ni % accumulate == 0:
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+
+ # Print
+ if rank in [-1, 0]:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
+ pbar.set_description(s)
+
+ # Plot
+ if plots and ni < 3:
+ f = save_dir / f'train_batch{ni}.jpg' # filename
+ plot_images(images=imgs, targets=targets, paths=paths, fname=f)
+ # if tb_writer:
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
+ # tb_writer.add_graph(model, imgs) # add model to tensorboard
+ elif plots and ni == 3 and wandb:
+ wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
+
+ # end batch ------------------------------------------------------------------------------------------------
+ # end epoch ----------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
+ scheduler.step()
+
+ # DDP process 0 or single-GPU
+ if rank in [-1, 0]:
+ # mAP
+ if ema:
+ ema.update_attr(model)
+ final_epoch = epoch + 1 == epochs
+ if not opt.notest or final_epoch: # Calculate mAP
+ if epoch >= 3:
+ results, maps, times = test.test(opt.data,
+ batch_size=batch_size*2,
+ imgsz=imgsz_test,
+ model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
+ single_cls=opt.single_cls,
+ dataloader=testloader,
+ save_dir=save_dir,
+ plots=plots and final_epoch,
+ log_imgs=opt.log_imgs if wandb else 0)
+
+ # Write
+ with open(results_file, 'a') as f:
+ f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ if len(opt.name) and opt.bucket:
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
+
+ # Log
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
+ if tb_writer:
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
+ if wandb:
+ wandb.log({tag: x}) # W&B
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_p = fitness_p(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_r = fitness_r(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_ap50 = fitness_ap50(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_ap = fitness_ap(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ if (fi_p > 0.0) or (fi_r > 0.0):
+ fi_f = fitness_f(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ else:
+ fi_f = 0.0
+ if fi > best_fitness:
+ best_fitness = fi
+ if fi_p > best_fitness_p:
+ best_fitness_p = fi_p
+ if fi_r > best_fitness_r:
+ best_fitness_r = fi_r
+ if fi_ap50 > best_fitness_ap50:
+ best_fitness_ap50 = fi_ap50
+ if fi_ap > best_fitness_ap:
+ best_fitness_ap = fi_ap
+ if fi_f > best_fitness_f:
+ best_fitness_f = fi_f
+
+ # Save model
+ save = (not opt.nosave) or (final_epoch and not opt.evolve)
+ if save:
+ with open(results_file, 'r') as f: # create checkpoint
+ ckpt = {'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'best_fitness_p': best_fitness_p,
+ 'best_fitness_r': best_fitness_r,
+ 'best_fitness_ap50': best_fitness_ap50,
+ 'best_fitness_ap': best_fitness_ap,
+ 'best_fitness_f': best_fitness_f,
+ 'training_results': f.read(),
+ 'model': ema.ema.module.state_dict() if hasattr(ema, 'module') else ema.ema.state_dict(),
+ 'optimizer': None if final_epoch else optimizer.state_dict(),
+ 'wandb_id': wandb_run.id if wandb else None}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if (best_fitness == fi) and (epoch >= 200):
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
+ if best_fitness == fi:
+ torch.save(ckpt, wdir / 'best_overall.pt')
+ if best_fitness_p == fi_p:
+ torch.save(ckpt, wdir / 'best_p.pt')
+ if best_fitness_r == fi_r:
+ torch.save(ckpt, wdir / 'best_r.pt')
+ if best_fitness_ap50 == fi_ap50:
+ torch.save(ckpt, wdir / 'best_ap50.pt')
+ if best_fitness_ap == fi_ap:
+ torch.save(ckpt, wdir / 'best_ap.pt')
+ if best_fitness_f == fi_f:
+ torch.save(ckpt, wdir / 'best_f.pt')
+ if epoch == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ if ((epoch+1) % 25) == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ if epoch >= (epochs-5):
+ torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
+ elif epoch >= 420:
+ torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
+ del ckpt
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training
+
+ if rank in [-1, 0]:
+ # Strip optimizers
+ n = opt.name if opt.name.isnumeric() else ''
+ fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
+ for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
+ if f1.exists():
+ os.rename(f1, f2) # rename
+ if str(f2).endswith('.pt'): # is *.pt
+ strip_optimizer(f2) # strip optimizer
+ os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
+ # Finish
+ if plots:
+ plot_results(save_dir=save_dir) # save as results.png
+ if wandb:
+ wandb.log({"Results": [wandb.Image(str(save_dir / x), caption=x) for x in
+ ['results.png', 'precision-recall_curve.png']]})
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
+ else:
+ dist.destroy_process_group()
+
+ wandb.run.finish() if wandb and wandb.run else None
+ torch.cuda.empty_cache()
+ return results
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='yolor_p6.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.1280.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=300)
+ parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[1280, 1280], help='[train, test] image sizes')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
+ parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ opt = parser.parse_args()
+
+ # Set DDP variables
+ opt.total_batch_size = opt.batch_size
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
+ set_logging(opt.global_rank)
+ if opt.global_rank in [-1, 0]:
+ check_git_status()
+
+ # Resume
+ if opt.resume: # resume an interrupted run
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
+ opt.cfg, opt.weights, opt.resume = '', ckpt, True
+ logger.info('Resuming training from %s' % ckpt)
+ else:
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
+ opt.name = 'evolve' if opt.evolve else opt.name
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if opt.local_rank != -1:
+ assert torch.cuda.device_count() > opt.local_rank
+ torch.cuda.set_device(opt.local_rank)
+ device = torch.device('cuda', opt.local_rank)
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
+ opt.batch_size = opt.total_batch_size // opt.world_size
+
+ # Hyperparameters
+ with open(opt.hyp) as f:
+ hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
+ if 'box' not in hyp:
+ warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
+ (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
+ hyp['box'] = hyp.pop('giou')
+
+ # Train
+ logger.info(opt)
+ if not opt.evolve:
+ tb_writer = None # init loggers
+ if opt.global_rank in [-1, 0]:
+ logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
+ train(hyp, opt, device, tb_writer, wandb)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
+
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
+ opt.notest, opt.nosave = True, True # only test/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
+ if opt.bucket:
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
+
+ for _ in range(300): # generations to evolve
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() # weights
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, wandb=wandb)
+
+ # Write mutation results
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
+
+ # Plot results
+ plot_evolution(yaml_file)
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
diff --git a/tune.py b/tune.py
new file mode 100644
index 0000000000000000000000000000000000000000..c6e5f617d4a9db509cc6159e9bac3b57b5ad1e5a
--- /dev/null
+++ b/tune.py
@@ -0,0 +1,619 @@
+import argparse
+import logging
+import math
+import os
+import random
+import time
+from pathlib import Path
+from warnings import warn
+
+import numpy as np
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+import torch.optim.lr_scheduler as lr_scheduler
+import torch.utils.data
+import yaml
+from torch.cuda import amp
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+import test # import test.py to get mAP after each epoch
+#from models.yolo import Model
+from models.models import *
+from utils.autoanchor import check_anchors
+from utils.datasets import create_dataloader9 as create_dataloader
+from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
+ fitness, fitness_p, fitness_r, fitness_ap50, fitness_ap, fitness_f, strip_optimizer, get_latest_run,\
+ check_dataset, check_file, check_git_status, check_img_size, print_mutation, set_logging
+from utils.google_utils import attempt_download
+from utils.loss import compute_loss
+from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
+from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
+
+logger = logging.getLogger(__name__)
+
+try:
+ import wandb
+except ImportError:
+ wandb = None
+ logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
+
+def train(hyp, opt, device, tb_writer=None, wandb=None):
+ logger.info(f'Hyperparameters {hyp}')
+ save_dir, epochs, batch_size, total_batch_size, weights, rank = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
+
+ # Directories
+ wdir = save_dir / 'weights'
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
+ last = wdir / 'last.pt'
+ best = wdir / 'best.pt'
+ results_file = save_dir / 'results.txt'
+
+ # Save run settings
+ with open(save_dir / 'hyp.yaml', 'w') as f:
+ yaml.dump(hyp, f, sort_keys=False)
+ with open(save_dir / 'opt.yaml', 'w') as f:
+ yaml.dump(vars(opt), f, sort_keys=False)
+
+ # Configure
+ plots = not opt.evolve # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(2 + rank)
+ with open(opt.data) as f:
+ data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
+ with torch_distributed_zero_first(rank):
+ check_dataset(data_dict) # check
+ train_path = data_dict['train']
+ test_path = data_dict['val']
+ nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
+
+ # Model
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(rank):
+ attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
+ model = Darknet(opt.cfg).to(device) # create
+ state_dict = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
+ model.load_state_dict(state_dict, strict=False)
+ print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
+ else:
+ model = Darknet(opt.cfg).to(device) # create
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
+
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
+ for k, v in dict(model.named_parameters()).items():
+ if '.bias' in k:
+ pg2.append(v) # biases
+ elif 'Conv2d.weight' in k:
+ pg1.append(v) # apply weight_decay
+ elif 'm.weight' in k:
+ pg1.append(v) # apply weight_decay
+ elif 'w.weight' in k:
+ pg1.append(v) # apply weight_decay
+ else:
+ pg0.append(v) # all else
+
+ if opt.adam:
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
+ else:
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
+
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
+ del pg0, pg1, pg2
+
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
+ lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # Logging
+ if wandb and wandb.run is None:
+ opt.hyp = hyp # add hyperparameters
+ wandb_run = wandb.init(config=opt, resume="allow",
+ project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
+ name=save_dir.stem,
+ id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
+
+ # Resume
+ start_epoch, best_fitness = 0, 0.0
+ best_fitness_p, best_fitness_r, best_fitness_ap50, best_fitness_ap, best_fitness_f = 0.0, 0.0, 0.0, 0.0, 0.0
+ if pretrained:
+ # Optimizer
+ if ckpt['optimizer'] is not None:
+ optimizer.load_state_dict(ckpt['optimizer'])
+ best_fitness = ckpt['best_fitness']
+ best_fitness_p = ckpt['best_fitness_p']
+ best_fitness_r = ckpt['best_fitness_r']
+ best_fitness_ap50 = ckpt['best_fitness_ap50']
+ best_fitness_ap = ckpt['best_fitness_ap']
+ best_fitness_f = ckpt['best_fitness_f']
+
+ # Results
+ if ckpt.get('training_results') is not None:
+ with open(results_file, 'w') as file:
+ file.write(ckpt['training_results']) # write results.txt
+
+ # Epochs
+ start_epoch = ckpt['epoch'] + 1
+ if opt.resume:
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
+ if epochs < start_epoch:
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
+ (weights, ckpt['epoch'], epochs))
+ epochs += ckpt['epoch'] # finetune additional epochs
+
+ del ckpt, state_dict
+
+ # Image sizes
+ gs = 64 #int(max(model.stride)) # grid size (max stride)
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
+
+ # DP mode
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and rank != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ logger.info('Using SyncBatchNorm()')
+
+ # EMA
+ ema = ModelEMA(model) if rank in [-1, 0] else None
+
+ # DDP mode
+ if cuda and rank != -1:
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
+
+ # Trainloader
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
+ rank=rank, world_size=opt.world_size, workers=opt.workers)
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
+ nb = len(dataloader) # number of batches
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
+
+ # Process 0
+ if rank in [-1, 0]:
+ ema.updates = start_epoch * nb // accumulate # set EMA updates
+ testloader = create_dataloader(test_path, imgsz_test, batch_size*2, gs, opt,
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
+ rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
+
+ if not opt.resume:
+ labels = np.concatenate(dataset.labels, 0)
+ c = torch.tensor(labels[:, 0]) # classes
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
+ # model._initialize_biases(cf.to(device))
+ if plots:
+ plot_labels(labels, save_dir=save_dir)
+ if tb_writer:
+ tb_writer.add_histogram('classes', c, 0)
+ if wandb:
+ wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})
+
+ # Anchors
+ # if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
+
+ # Model parameters
+ hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = amp.GradScaler(enabled=cuda)
+ logger.info('Image sizes %g train, %g test\n'
+ 'Using %g dataloader workers\nLogging results to %s\n'
+ 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
+
+ torch.save(model, wdir / 'init.pt')
+
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ model.train()
+
+ # Update image weights (optional)
+ if opt.image_weights:
+ # Generate indices
+ if rank in [-1, 0]:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ # Broadcast if DDP
+ if rank != -1:
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
+ dist.broadcast(indices, 0)
+ if rank != 0:
+ dataset.indices = indices.cpu().numpy()
+
+ # Update mosaic border
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(4, device=device) # mean losses
+ if rank != -1:
+ dataloader.sampler.set_epoch(epoch)
+ pbar = enumerate(dataloader)
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
+ if rank in [-1, 0]:
+ pbar = tqdm(pbar, total=nb) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with amp.autocast(enabled=cuda):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
+ if rank != -1:
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize
+ if ni % accumulate == 0:
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+
+ # Print
+ if rank in [-1, 0]:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
+ pbar.set_description(s)
+
+ # Plot
+ if plots and ni < 3:
+ f = save_dir / f'train_batch{ni}.jpg' # filename
+ plot_images(images=imgs, targets=targets, paths=paths, fname=f)
+ # if tb_writer:
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
+ # tb_writer.add_graph(model, imgs) # add model to tensorboard
+ elif plots and ni == 3 and wandb:
+ wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
+
+ # end batch ------------------------------------------------------------------------------------------------
+ # end epoch ----------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
+ scheduler.step()
+
+ # DDP process 0 or single-GPU
+ if rank in [-1, 0]:
+ # mAP
+ if ema:
+ ema.update_attr(model)
+ final_epoch = epoch + 1 == epochs
+ if not opt.notest or final_epoch: # Calculate mAP
+ if epoch >= 3:
+ results, maps, times = test.test(opt.data,
+ batch_size=batch_size*2,
+ imgsz=imgsz_test,
+ model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
+ single_cls=opt.single_cls,
+ dataloader=testloader,
+ save_dir=save_dir,
+ plots=plots and final_epoch,
+ log_imgs=opt.log_imgs if wandb else 0)
+
+ # Write
+ with open(results_file, 'a') as f:
+ f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ if len(opt.name) and opt.bucket:
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
+
+ # Log
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
+ if tb_writer:
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
+ if wandb:
+ wandb.log({tag: x}) # W&B
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_p = fitness_p(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_r = fitness_r(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_ap50 = fitness_ap50(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ fi_ap = fitness_ap(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ if (fi_p > 0.0) or (fi_r > 0.0):
+ fi_f = fitness_f(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ else:
+ fi_f = 0.0
+ if fi > best_fitness:
+ best_fitness = fi
+ if fi_p > best_fitness_p:
+ best_fitness_p = fi_p
+ if fi_r > best_fitness_r:
+ best_fitness_r = fi_r
+ if fi_ap50 > best_fitness_ap50:
+ best_fitness_ap50 = fi_ap50
+ if fi_ap > best_fitness_ap:
+ best_fitness_ap = fi_ap
+ if fi_f > best_fitness_f:
+ best_fitness_f = fi_f
+
+ # Save model
+ save = (not opt.nosave) or (final_epoch and not opt.evolve)
+ if save:
+ with open(results_file, 'r') as f: # create checkpoint
+ ckpt = {'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'best_fitness_p': best_fitness_p,
+ 'best_fitness_r': best_fitness_r,
+ 'best_fitness_ap50': best_fitness_ap50,
+ 'best_fitness_ap': best_fitness_ap,
+ 'best_fitness_f': best_fitness_f,
+ 'training_results': f.read(),
+ 'model': ema.ema.module.state_dict() if hasattr(ema, 'module') else ema.ema.state_dict(),
+ 'optimizer': None if final_epoch else optimizer.state_dict(),
+ 'wandb_id': wandb_run.id if wandb else None}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if (best_fitness == fi) and (epoch >= 200):
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
+ if best_fitness == fi:
+ torch.save(ckpt, wdir / 'best_overall.pt')
+ if best_fitness_p == fi_p:
+ torch.save(ckpt, wdir / 'best_p.pt')
+ if best_fitness_r == fi_r:
+ torch.save(ckpt, wdir / 'best_r.pt')
+ if best_fitness_ap50 == fi_ap50:
+ torch.save(ckpt, wdir / 'best_ap50.pt')
+ if best_fitness_ap == fi_ap:
+ torch.save(ckpt, wdir / 'best_ap.pt')
+ if best_fitness_f == fi_f:
+ torch.save(ckpt, wdir / 'best_f.pt')
+ if epoch == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ if ((epoch+1) % 25) == 0:
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
+ if epoch >= (epochs-5):
+ torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
+ elif epoch >= 420:
+ torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
+ del ckpt
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training
+
+ if rank in [-1, 0]:
+ # Strip optimizers
+ n = opt.name if opt.name.isnumeric() else ''
+ fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
+ for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
+ if f1.exists():
+ os.rename(f1, f2) # rename
+ if str(f2).endswith('.pt'): # is *.pt
+ strip_optimizer(f2) # strip optimizer
+ os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
+ # Finish
+ if plots:
+ plot_results(save_dir=save_dir) # save as results.png
+ if wandb:
+ wandb.log({"Results": [wandb.Image(str(save_dir / x), caption=x) for x in
+ ['results.png', 'precision-recall_curve.png']]})
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
+ else:
+ dist.destroy_process_group()
+
+ wandb.run.finish() if wandb and wandb.run else None
+ torch.cuda.empty_cache()
+ return results
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='yolor_p6.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.1280.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=300)
+ parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[1280, 1280], help='[train, test] image sizes')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
+ parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ opt = parser.parse_args()
+
+ # Set DDP variables
+ opt.total_batch_size = opt.batch_size
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
+ set_logging(opt.global_rank)
+ if opt.global_rank in [-1, 0]:
+ check_git_status()
+
+ # Resume
+ if opt.resume: # resume an interrupted run
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
+ opt.cfg, opt.weights, opt.resume = '', ckpt, True
+ logger.info('Resuming training from %s' % ckpt)
+ else:
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
+ opt.name = 'evolve' if opt.evolve else opt.name
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if opt.local_rank != -1:
+ assert torch.cuda.device_count() > opt.local_rank
+ torch.cuda.set_device(opt.local_rank)
+ device = torch.device('cuda', opt.local_rank)
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
+ opt.batch_size = opt.total_batch_size // opt.world_size
+
+ # Hyperparameters
+ with open(opt.hyp) as f:
+ hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
+ if 'box' not in hyp:
+ warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
+ (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
+ hyp['box'] = hyp.pop('giou')
+
+ # Train
+ logger.info(opt)
+ if not opt.evolve:
+ tb_writer = None # init loggers
+ if opt.global_rank in [-1, 0]:
+ logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
+ train(hyp, opt, device, tb_writer, wandb)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
+
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
+ opt.notest, opt.nosave = True, True # only test/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
+ if opt.bucket:
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
+
+ for _ in range(300): # generations to evolve
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() # weights
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, wandb=wandb)
+
+ # Write mutation results
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
+
+ # Plot results
+ plot_evolution(yaml_file)
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc
--- /dev/null
+++ b/utils/__init__.py
@@ -0,0 +1 @@
+
diff --git a/utils/__pycache__/__init__.cpython-37.pyc b/utils/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..385fae57b08c6d7dfdacc33fe37d7c4e562ce0b8
Binary files /dev/null and b/utils/__pycache__/__init__.cpython-37.pyc differ
diff --git a/utils/__pycache__/__init__.cpython-38.pyc b/utils/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..954d53344292bc0f8e8ab3bc5a2024e5abb787f8
Binary files /dev/null and b/utils/__pycache__/__init__.cpython-38.pyc differ
diff --git a/utils/__pycache__/datasets.cpython-37.pyc b/utils/__pycache__/datasets.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9a73d5b69db5706534faa78012514507bdd5794d
Binary files /dev/null and b/utils/__pycache__/datasets.cpython-37.pyc differ
diff --git a/utils/__pycache__/datasets.cpython-38.pyc b/utils/__pycache__/datasets.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..808eb1873b7353c62687b1d56ec53f173b3d08f8
Binary files /dev/null and b/utils/__pycache__/datasets.cpython-38.pyc differ
diff --git a/utils/__pycache__/general.cpython-37.pyc b/utils/__pycache__/general.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..beedc3b88f0fc0f2e7b09f88462b485683a867ae
Binary files /dev/null and b/utils/__pycache__/general.cpython-37.pyc differ
diff --git a/utils/__pycache__/google_utils.cpython-37.pyc b/utils/__pycache__/google_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..540ee450c0bb64ab8330d7cb9ffa83a6d1461071
Binary files /dev/null and b/utils/__pycache__/google_utils.cpython-37.pyc differ
diff --git a/utils/__pycache__/google_utils.cpython-38.pyc b/utils/__pycache__/google_utils.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ad52e271ccd4980b534527f0a3b3e6c1e09c0d64
Binary files /dev/null and b/utils/__pycache__/google_utils.cpython-38.pyc differ
diff --git a/utils/__pycache__/layers.cpython-37.pyc b/utils/__pycache__/layers.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9642c8676e56622c1ae66a47a3cb95adce778e1c
Binary files /dev/null and b/utils/__pycache__/layers.cpython-37.pyc differ
diff --git a/utils/__pycache__/metrics.cpython-37.pyc b/utils/__pycache__/metrics.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..037fea4f8caf324454204f2da16700becced4875
Binary files /dev/null and b/utils/__pycache__/metrics.cpython-37.pyc differ
diff --git a/utils/__pycache__/parse_config.cpython-37.pyc b/utils/__pycache__/parse_config.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73b394ee96dcf8cb7329004b1662103e8e8cc962
Binary files /dev/null and b/utils/__pycache__/parse_config.cpython-37.pyc differ
diff --git a/utils/__pycache__/plots.cpython-37.pyc b/utils/__pycache__/plots.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..763745cabd3a6e157eb5e16d34ba0620429d4280
Binary files /dev/null and b/utils/__pycache__/plots.cpython-37.pyc differ
diff --git a/utils/__pycache__/torch_utils.cpython-37.pyc b/utils/__pycache__/torch_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72283159cafc4a8887aeab4af0da5ae1509df7e4
Binary files /dev/null and b/utils/__pycache__/torch_utils.cpython-37.pyc differ
diff --git a/utils/activations.py b/utils/activations.py
new file mode 100644
index 0000000000000000000000000000000000000000..ba6b854ddcc4ba2004440b8e2c946911d37f0af1
--- /dev/null
+++ b/utils/activations.py
@@ -0,0 +1,72 @@
+# Activation functions
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+# Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
+class Swish(nn.Module): #
+ @staticmethod
+ def forward(x):
+ return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
+ @staticmethod
+ def forward(x):
+ # return x * F.hardsigmoid(x) # for torchscript and CoreML
+ return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
+
+
+class MemoryEfficientSwish(nn.Module):
+ class F(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x * torch.sigmoid(x)
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ return grad_output * (sx * (1 + x * (1 - sx)))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
+class Mish(nn.Module):
+ @staticmethod
+ def forward(x):
+ return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+ class F(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ fx = F.softplus(x).tanh()
+ return grad_output * (fx + x * sx * (1 - fx * fx))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
+class FReLU(nn.Module):
+ def __init__(self, c1, k=3): # ch_in, kernel
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
+ self.bn = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ return torch.max(x, self.bn(self.conv(x)))
diff --git a/utils/autoanchor.py b/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e82492bf09050013cb1bee6fbec6baef5ff22a5
--- /dev/null
+++ b/utils/autoanchor.py
@@ -0,0 +1,152 @@
+# Auto-anchor utils
+
+import numpy as np
+import torch
+import yaml
+from scipy.cluster.vq import kmeans
+from tqdm import tqdm
+
+
+def check_anchor_order(m):
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
+ da = a[-1] - a[0] # delta a
+ ds = m.stride[-1] - m.stride[0] # delta s
+ if da.sign() != ds.sign(): # same order
+ print('Reversing anchor order')
+ m.anchors[:] = m.anchors.flip(0)
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
+
+
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+ # Check anchor fit to data, recompute if necessary
+ print('\nAnalyzing anchors... ', end='')
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
+
+ def metric(k): # compute metric
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ best = x.max(1)[0] # best_x
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
+ bpr = (best > 1. / thr).float().mean() # best possible recall
+ return bpr, aat
+
+ bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
+ print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
+ if bpr < 0.98: # threshold to recompute
+ print('. Attempting to improve anchors, please wait...')
+ na = m.anchor_grid.numel() // 2 # number of anchors
+ new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+ new_bpr = metric(new_anchors.reshape(-1, 2))[0]
+ if new_bpr > bpr: # replace anchors
+ new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
+ m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
+ m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
+ check_anchor_order(m)
+ print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
+ else:
+ print('Original anchors better than new anchors. Proceeding with original anchors.')
+ print('') # newline
+
+
+def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+ """ Creates kmeans-evolved anchors from training dataset
+
+ Arguments:
+ path: path to dataset *.yaml, or a loaded dataset
+ n: number of anchors
+ img_size: image size used for training
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+ gen: generations to evolve anchors using genetic algorithm
+ verbose: print all results
+
+ Return:
+ k: kmeans evolved anchors
+
+ Usage:
+ from utils.general import *; _ = kmean_anchors()
+ """
+ thr = 1. / thr
+
+ def metric(k, wh): # compute metrics
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
+ return x, x.max(1)[0] # x, best_x
+
+ def anchor_fitness(k): # mutation fitness
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+ return (best * (best > thr).float()).mean() # fitness
+
+ def print_results(k):
+ k = k[np.argsort(k.prod(1))] # sort small to large
+ x, best = metric(k, wh0)
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
+ print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
+ print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
+ (n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
+ for i, x in enumerate(k):
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
+ return k
+
+ if isinstance(path, str): # *.yaml file
+ with open(path) as f:
+ data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
+ from utils.datasets import LoadImagesAndLabels
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+ else:
+ dataset = path # dataset
+
+ # Get label wh
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
+
+ # Filter
+ i = (wh0 < 3.0).any(1).sum()
+ if i:
+ print('WARNING: Extremely small objects found. '
+ '%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
+
+ # Kmeans calculation
+ print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
+ s = wh.std(0) # sigmas for whitening
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
+ k *= s
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
+ k = print_results(k)
+
+ # Plot
+ # k, d = [None] * 20, [None] * 20
+ # for i in tqdm(range(1, 21)):
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7))
+ # ax = ax.ravel()
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+ # fig.tight_layout()
+ # fig.savefig('wh.png', dpi=200)
+
+ # Evolve
+ npr = np.random
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
+ pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
+ for _ in pbar:
+ v = np.ones(sh)
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+ kg = (k.copy() * v).clip(min=2.0)
+ fg = anchor_fitness(kg)
+ if fg > f:
+ f, k = fg, kg.copy()
+ pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
+ if verbose:
+ print_results(k)
+
+ return print_results(k)
diff --git a/utils/datasets.py b/utils/datasets.py
new file mode 100644
index 0000000000000000000000000000000000000000..116cd41369e4510e3fc4e260d958bf30fbe9799d
--- /dev/null
+++ b/utils/datasets.py
@@ -0,0 +1,1297 @@
+# Dataset utils and dataloaders
+
+import glob
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from threading import Thread
+
+import cv2
+import numpy as np
+import torch
+from PIL import Image, ExifTags
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+import pickle
+from copy import deepcopy
+from pycocotools import mask as maskUtils
+from torchvision.utils import save_image
+
+from utils.general import xyxy2xywh, xywh2xyxy
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+ if ExifTags.TAGS[orientation] == 'Orientation':
+ break
+
+
+def get_hash(files):
+ # Returns a single hash value of a list of files
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
+
+
+def exif_size(img):
+ # Returns exif-corrected PIL size
+ s = img.size # (width, height)
+ try:
+ rotation = dict(img._getexif().items())[orientation]
+ if rotation == 6: # rotation 270
+ s = (s[1], s[0])
+ elif rotation == 8: # rotation 90
+ s = (s[1], s[0])
+ except:
+ pass
+
+ return s
+
+
+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
+ rank=-1, world_size=1, workers=8):
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
+ with torch_distributed_zero_first(rank):
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+ augment=augment, # augment images
+ hyp=hyp, # augmentation hyperparameters
+ rect=rect, # rectangular training
+ cache_images=cache,
+ single_cls=opt.single_cls,
+ stride=int(stride),
+ pad=pad,
+ rank=rank)
+
+ batch_size = min(batch_size, len(dataset))
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
+ dataloader = InfiniteDataLoader(dataset,
+ batch_size=batch_size,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabels.collate_fn) # torch.utils.data.DataLoader()
+ return dataloader, dataset
+
+
+def create_dataloader9(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
+ rank=-1, world_size=1, workers=8):
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
+ with torch_distributed_zero_first(rank):
+ dataset = LoadImagesAndLabels9(path, imgsz, batch_size,
+ augment=augment, # augment images
+ hyp=hyp, # augmentation hyperparameters
+ rect=rect, # rectangular training
+ cache_images=cache,
+ single_cls=opt.single_cls,
+ stride=int(stride),
+ pad=pad,
+ rank=rank)
+
+ batch_size = min(batch_size, len(dataset))
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
+ dataloader = InfiniteDataLoader(dataset,
+ batch_size=batch_size,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabels9.collate_fn) # torch.utils.data.DataLoader()
+ return dataloader, dataset
+
+
+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
+ """ Dataloader that reuses workers
+
+ Uses same syntax as vanilla DataLoader
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+ self.iterator = super().__iter__()
+
+ def __len__(self):
+ return len(self.batch_sampler.sampler)
+
+ def __iter__(self):
+ for i in range(len(self)):
+ yield next(self.iterator)
+
+
+class _RepeatSampler(object):
+ """ Sampler that repeats forever
+
+ Args:
+ sampler (Sampler)
+ """
+
+ def __init__(self, sampler):
+ self.sampler = sampler
+
+ def __iter__(self):
+ while True:
+ yield from iter(self.sampler)
+
+
+class LoadImages: # for inference
+ def __init__(self, path, img_size=640, auto_size=32):
+ p = str(Path(path)) # os-agnostic
+ p = os.path.abspath(p) # absolute path
+ if '*' in p:
+ files = sorted(glob.glob(p, recursive=True)) # glob
+ elif os.path.isdir(p):
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
+ elif os.path.isfile(p):
+ files = [p] # files
+ else:
+ raise Exception('ERROR: %s does not exist' % p)
+
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
+ ni, nv = len(images), len(videos)
+
+ self.img_size = img_size
+ self.auto_size = auto_size
+ self.files = images + videos
+ self.nf = ni + nv # number of files
+ self.video_flag = [False] * ni + [True] * nv
+ self.mode = 'images'
+ if any(videos):
+ self.new_video(videos[0]) # new video
+ else:
+ self.cap = None
+ assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
+ (p, img_formats, vid_formats)
+
+ def __iter__(self):
+ self.count = 0
+ return self
+
+ def __next__(self):
+ if self.count == self.nf:
+ raise StopIteration
+ path = self.files[self.count]
+
+ if self.video_flag[self.count]:
+ # Read video
+ self.mode = 'video'
+ ret_val, img0 = self.cap.read()
+ if not ret_val:
+ self.count += 1
+ self.cap.release()
+ if self.count == self.nf: # last video
+ raise StopIteration
+ else:
+ path = self.files[self.count]
+ self.new_video(path)
+ ret_val, img0 = self.cap.read()
+
+ self.frame += 1
+ print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
+
+ else:
+ # Read image
+ self.count += 1
+ img0 = cv2.imread(path) # BGR
+ assert img0 is not None, 'Image Not Found ' + path
+ print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
+
+ # Padded resize
+ img = letterbox(img0, new_shape=self.img_size, auto_size=self.auto_size)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return path, img, img0, self.cap
+
+ def new_video(self, path):
+ self.frame = 0
+ self.cap = cv2.VideoCapture(path)
+ self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+ def __len__(self):
+ return self.nf # number of files
+
+
+class LoadWebcam: # for inference
+ def __init__(self, pipe='0', img_size=640):
+ self.img_size = img_size
+
+ if pipe.isnumeric():
+ pipe = eval(pipe) # local camera
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
+ # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
+
+ self.pipe = pipe
+ self.cap = cv2.VideoCapture(pipe) # video capture object
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ if cv2.waitKey(1) == ord('q'): # q to quit
+ self.cap.release()
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Read frame
+ if self.pipe == 0: # local camera
+ ret_val, img0 = self.cap.read()
+ img0 = cv2.flip(img0, 1) # flip left-right
+ else: # IP camera
+ n = 0
+ while True:
+ n += 1
+ self.cap.grab()
+ if n % 30 == 0: # skip frames
+ ret_val, img0 = self.cap.retrieve()
+ if ret_val:
+ break
+
+ # Print
+ assert ret_val, 'Camera Error %s' % self.pipe
+ img_path = 'webcam.jpg'
+ print('webcam %g: ' % self.count, end='')
+
+ # Padded resize
+ img = letterbox(img0, new_shape=self.img_size)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return img_path, img, img0, None
+
+ def __len__(self):
+ return 0
+
+
+class LoadStreams: # multiple IP or RTSP cameras
+ def __init__(self, sources='streams.txt', img_size=640):
+ self.mode = 'images'
+ self.img_size = img_size
+
+ if os.path.isfile(sources):
+ with open(sources, 'r') as f:
+ sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
+ else:
+ sources = [sources]
+
+ n = len(sources)
+ self.imgs = [None] * n
+ self.sources = sources
+ for i, s in enumerate(sources):
+ # Start the thread to read frames from the video stream
+ print('%g/%g: %s... ' % (i + 1, n, s), end='')
+ cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
+ assert cap.isOpened(), 'Failed to open %s' % s
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ fps = cap.get(cv2.CAP_PROP_FPS) % 100
+ _, self.imgs[i] = cap.read() # guarantee first frame
+ thread = Thread(target=self.update, args=([i, cap]), daemon=True)
+ print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
+ thread.start()
+ print('') # newline
+
+ # check for common shapes
+ s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
+ if not self.rect:
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
+
+ def update(self, index, cap):
+ # Read next stream frame in a daemon thread
+ n = 0
+ while cap.isOpened():
+ n += 1
+ # _, self.imgs[index] = cap.read()
+ cap.grab()
+ if n == 4: # read every 4th frame
+ _, self.imgs[index] = cap.retrieve()
+ n = 0
+ time.sleep(0.01) # wait time
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ img0 = self.imgs.copy()
+ if cv2.waitKey(1) == ord('q'): # q to quit
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Letterbox
+ img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
+
+ # Stack
+ img = np.stack(img, 0)
+
+ # Convert
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
+ img = np.ascontiguousarray(img)
+
+ return self.sources, img, img0, None
+
+ def __len__(self):
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+class LoadImagesAndLabels(Dataset): # for training/testing
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+ cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
+ self.img_size = img_size
+ self.augment = augment
+ self.hyp = hyp
+ self.image_weights = image_weights
+ self.rect = False if image_weights else rect
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
+ self.stride = stride
+
+ def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
+ return [x.replace(sa, sb, 1).replace(x.split('.')[-1], 'txt') for x in img_paths]
+
+ try:
+ f = [] # image files
+ for p in path if isinstance(path, list) else [path]:
+ p = Path(p) # os-agnostic
+ if p.is_dir(): # dir
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+ elif p.is_file(): # file
+ with open(p, 'r') as t:
+ t = t.read().splitlines()
+ parent = str(p.parent) + os.sep
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
+ else:
+ raise Exception('%s does not exist' % p)
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
+ assert self.img_files, 'No images found'
+ except Exception as e:
+ raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
+
+ # Check cache
+ self.label_files = img2label_paths(self.img_files) # labels
+ cache_path = str(Path(self.label_files[0]).parent) + '.cache3' # cached labels
+ if os.path.isfile(cache_path):
+ cache = torch.load(cache_path) # load
+ if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
+ cache = self.cache_labels(cache_path) # re-cache
+ else:
+ cache = self.cache_labels(cache_path) # cache
+
+ # Read cache
+ cache.pop('hash') # remove hash
+ labels, shapes = zip(*cache.values())
+ self.labels = list(labels)
+ self.shapes = np.array(shapes, dtype=np.float64)
+ self.img_files = list(cache.keys()) # update
+ self.label_files = img2label_paths(cache.keys()) # update
+
+ n = len(shapes) # number of images
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
+ nb = bi[-1] + 1 # number of batches
+ self.batch = bi # batch index of image
+ self.n = n
+
+ # Rectangular Training
+ if self.rect:
+ # Sort by aspect ratio
+ s = self.shapes # wh
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.img_files = [self.img_files[i] for i in irect]
+ self.label_files = [self.label_files[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * nb
+ for i in range(nb):
+ ari = ar[bi == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [maxi, 1]
+ elif mini > 1:
+ shapes[i] = [1, 1 / mini]
+
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+ # Check labels
+ create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
+ nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
+ pbar = enumerate(self.label_files)
+ if rank in [-1, 0]:
+ pbar = tqdm(pbar)
+ for i, file in pbar:
+ l = self.labels[i] # label
+ if l is not None and l.shape[0]:
+ assert l.shape[1] == 5, '> 5 label columns: %s' % file
+ assert (l >= 0).all(), 'negative labels: %s' % file
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
+ if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
+ nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
+ if single_cls:
+ l[:, 0] = 0 # force dataset into single-class mode
+ self.labels[i] = l
+ nf += 1 # file found
+
+ # Create subdataset (a smaller dataset)
+ if create_datasubset and ns < 1E4:
+ if ns == 0:
+ create_folder(path='./datasubset')
+ os.makedirs('./datasubset/images')
+ exclude_classes = 43
+ if exclude_classes not in l[:, 0]:
+ ns += 1
+ # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
+ with open('./datasubset/images.txt', 'a') as f:
+ f.write(self.img_files[i] + '\n')
+
+ # Extract object detection boxes for a second stage classifier
+ if extract_bounding_boxes:
+ p = Path(self.img_files[i])
+ img = cv2.imread(str(p))
+ h, w = img.shape[:2]
+ for j, x in enumerate(l):
+ f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
+ if not os.path.exists(Path(f).parent):
+ os.makedirs(Path(f).parent) # make new output folder
+
+ b = x[1:] * [w, h, w, h] # box
+ b[2:] = b[2:].max() # rectangle to square
+ b[2:] = b[2:] * 1.3 + 30 # pad
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+ assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
+ else:
+ ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
+ # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
+
+ if rank in [-1, 0]:
+ pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
+ cache_path, nf, nm, ne, nd, n)
+ if nf == 0:
+ s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
+ print(s)
+ assert not augment, '%s. Can not train without labels.' % s
+
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+ self.imgs = [None] * n
+ if cache_images:
+ gb = 0 # Gigabytes of cached images
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
+ pbar = tqdm(enumerate(results), total=n)
+ for i, x in pbar:
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
+ gb += self.imgs[i].nbytes
+ pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
+
+ def cache_labels(self, path='labels.cache3'):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
+ for (img, label) in pbar:
+ try:
+ l = []
+ im = Image.open(img)
+ im.verify() # PIL verify
+ shape = exif_size(im) # image size
+ assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
+ if os.path.isfile(label):
+ with open(label, 'r') as f:
+ l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
+ if len(l) == 0:
+ l = np.zeros((0, 5), dtype=np.float32)
+ x[img] = [l, shape]
+ except Exception as e:
+ print('WARNING: Ignoring corrupted image and/or label %s: %s' % (img, e))
+
+ x['hash'] = get_hash(self.label_files + self.img_files)
+ torch.save(x, path) # save for next time
+ return x
+
+ def __len__(self):
+ return len(self.img_files)
+
+ # def __iter__(self):
+ # self.count = -1
+ # print('ran dataset iter')
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+ # return self
+
+ def __getitem__(self, index):
+ if self.image_weights:
+ index = self.indices[index]
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ if mosaic:
+ # Load mosaic
+ img, labels = load_mosaic(self, index)
+ #img, labels = load_mosaic9(self, index)
+ shapes = None
+
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
+ if random.random() < hyp['mixup']:
+ img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
+ #img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = load_image(self, index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ # Load labels
+ labels = []
+ x = self.labels[index]
+ if x.size > 0:
+ # Normalized xywh to pixel xyxy format
+ labels = x.copy()
+ labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
+ labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
+ labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
+ labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
+
+ if self.augment:
+ # Augment imagespace
+ if not mosaic:
+ img, labels = random_perspective(img, labels,
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ perspective=hyp['perspective'])
+
+ # Augment colorspace
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+ # Apply cutouts
+ # if random.random() < 0.9:
+ # labels = cutout(img, labels)
+
+ nL = len(labels) # number of labels
+ if nL:
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
+
+ if self.augment:
+ # flip up-down
+ if random.random() < hyp['flipud']:
+ img = np.flipud(img)
+ if nL:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # flip left-right
+ if random.random() < hyp['fliplr']:
+ img = np.fliplr(img)
+ if nL:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ labels_out = torch.zeros((nL, 6))
+ if nL:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+
+class LoadImagesAndLabels9(Dataset): # for training/testing
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+ cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
+ self.img_size = img_size
+ self.augment = augment
+ self.hyp = hyp
+ self.image_weights = image_weights
+ self.rect = False if image_weights else rect
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
+ self.stride = stride
+
+ def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
+ return [x.replace(sa, sb, 1).replace(x.split('.')[-1], 'txt') for x in img_paths]
+
+ try:
+ f = [] # image files
+ for p in path if isinstance(path, list) else [path]:
+ p = Path(p) # os-agnostic
+ if p.is_dir(): # dir
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+ elif p.is_file(): # file
+ with open(p, 'r') as t:
+ t = t.read().splitlines()
+ parent = str(p.parent) + os.sep
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
+ else:
+ raise Exception('%s does not exist' % p)
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
+ assert self.img_files, 'No images found'
+ except Exception as e:
+ raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
+
+ # Check cache
+ self.label_files = img2label_paths(self.img_files) # labels
+ cache_path = str(Path(self.label_files[0]).parent) + '.cache3' # cached labels
+ if os.path.isfile(cache_path):
+ cache = torch.load(cache_path) # load
+ if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
+ cache = self.cache_labels(cache_path) # re-cache
+ else:
+ cache = self.cache_labels(cache_path) # cache
+
+ # Read cache
+ cache.pop('hash') # remove hash
+ labels, shapes = zip(*cache.values())
+ self.labels = list(labels)
+ self.shapes = np.array(shapes, dtype=np.float64)
+ self.img_files = list(cache.keys()) # update
+ self.label_files = img2label_paths(cache.keys()) # update
+
+ n = len(shapes) # number of images
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
+ nb = bi[-1] + 1 # number of batches
+ self.batch = bi # batch index of image
+ self.n = n
+
+ # Rectangular Training
+ if self.rect:
+ # Sort by aspect ratio
+ s = self.shapes # wh
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.img_files = [self.img_files[i] for i in irect]
+ self.label_files = [self.label_files[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * nb
+ for i in range(nb):
+ ari = ar[bi == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [maxi, 1]
+ elif mini > 1:
+ shapes[i] = [1, 1 / mini]
+
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+ # Check labels
+ create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
+ nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
+ pbar = enumerate(self.label_files)
+ if rank in [-1, 0]:
+ pbar = tqdm(pbar)
+ for i, file in pbar:
+ l = self.labels[i] # label
+ if l is not None and l.shape[0]:
+ assert l.shape[1] == 5, '> 5 label columns: %s' % file
+ assert (l >= 0).all(), 'negative labels: %s' % file
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
+ if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
+ nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
+ if single_cls:
+ l[:, 0] = 0 # force dataset into single-class mode
+ self.labels[i] = l
+ nf += 1 # file found
+
+ # Create subdataset (a smaller dataset)
+ if create_datasubset and ns < 1E4:
+ if ns == 0:
+ create_folder(path='./datasubset')
+ os.makedirs('./datasubset/images')
+ exclude_classes = 43
+ if exclude_classes not in l[:, 0]:
+ ns += 1
+ # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
+ with open('./datasubset/images.txt', 'a') as f:
+ f.write(self.img_files[i] + '\n')
+
+ # Extract object detection boxes for a second stage classifier
+ if extract_bounding_boxes:
+ p = Path(self.img_files[i])
+ img = cv2.imread(str(p))
+ h, w = img.shape[:2]
+ for j, x in enumerate(l):
+ f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
+ if not os.path.exists(Path(f).parent):
+ os.makedirs(Path(f).parent) # make new output folder
+
+ b = x[1:] * [w, h, w, h] # box
+ b[2:] = b[2:].max() # rectangle to square
+ b[2:] = b[2:] * 1.3 + 30 # pad
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+ assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
+ else:
+ ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
+ # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
+
+ if rank in [-1, 0]:
+ pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
+ cache_path, nf, nm, ne, nd, n)
+ if nf == 0:
+ s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
+ print(s)
+ assert not augment, '%s. Can not train without labels.' % s
+
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+ self.imgs = [None] * n
+ if cache_images:
+ gb = 0 # Gigabytes of cached images
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
+ pbar = tqdm(enumerate(results), total=n)
+ for i, x in pbar:
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
+ gb += self.imgs[i].nbytes
+ pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
+
+ def cache_labels(self, path='labels.cache3'):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
+ for (img, label) in pbar:
+ try:
+ l = []
+ im = Image.open(img)
+ im.verify() # PIL verify
+ shape = exif_size(im) # image size
+ assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
+ if os.path.isfile(label):
+ with open(label, 'r') as f:
+ l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
+ if len(l) == 0:
+ l = np.zeros((0, 5), dtype=np.float32)
+ x[img] = [l, shape]
+ except Exception as e:
+ print('WARNING: Ignoring corrupted image and/or label %s: %s' % (img, e))
+
+ x['hash'] = get_hash(self.label_files + self.img_files)
+ torch.save(x, path) # save for next time
+ return x
+
+ def __len__(self):
+ return len(self.img_files)
+
+ # def __iter__(self):
+ # self.count = -1
+ # print('ran dataset iter')
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+ # return self
+
+ def __getitem__(self, index):
+ if self.image_weights:
+ index = self.indices[index]
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ if mosaic:
+ # Load mosaic
+ #img, labels = load_mosaic(self, index)
+ img, labels = load_mosaic9(self, index)
+ shapes = None
+
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
+ if random.random() < hyp['mixup']:
+ #img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
+ img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = load_image(self, index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ # Load labels
+ labels = []
+ x = self.labels[index]
+ if x.size > 0:
+ # Normalized xywh to pixel xyxy format
+ labels = x.copy()
+ labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
+ labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
+ labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
+ labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
+
+ if self.augment:
+ # Augment imagespace
+ if not mosaic:
+ img, labels = random_perspective(img, labels,
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ perspective=hyp['perspective'])
+
+ # Augment colorspace
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+ # Apply cutouts
+ # if random.random() < 0.9:
+ # labels = cutout(img, labels)
+
+ nL = len(labels) # number of labels
+ if nL:
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
+
+ if self.augment:
+ # flip up-down
+ if random.random() < hyp['flipud']:
+ img = np.flipud(img)
+ if nL:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # flip left-right
+ if random.random() < hyp['fliplr']:
+ img = np.fliplr(img)
+ if nL:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ labels_out = torch.zeros((nL, 6))
+ if nL:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def load_image(self, index):
+ # loads 1 image from dataset, returns img, original hw, resized hw
+ img = self.imgs[index]
+ if img is None: # not cached
+ path = self.img_files[index]
+ img = cv2.imread(path) # BGR
+ assert img is not None, 'Image Not Found ' + path
+ h0, w0 = img.shape[:2] # orig hw
+ r = self.img_size / max(h0, w0) # resize image to img_size
+ if r != 1: # always resize down, only resize up if training with augmentation
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
+ else:
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
+
+
+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
+ dtype = img.dtype # uint8
+
+ x = np.arange(0, 256, dtype=np.int16)
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
+
+ # Histogram equalization
+ # if random.random() < 0.2:
+ # for i in range(3):
+ # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
+
+
+def load_mosaic(self, index):
+ # loads images in a mosaic
+
+ labels4 = []
+ s = self.img_size
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
+ indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ # Labels
+ x = self.labels[index]
+ labels = x.copy()
+ if x.size > 0: # Normalized xywh to pixel xyxy format
+ labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
+ labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
+ labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
+ labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
+ labels4.append(labels)
+
+ # Concat/clip labels
+ if len(labels4):
+ labels4 = np.concatenate(labels4, 0)
+ np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ img4, labels4 = random_perspective(img4, labels4,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img4, labels4
+
+
+def load_mosaic9(self, index):
+ # loads images in a 9-mosaic
+
+ labels9 = []
+ s = self.img_size
+ indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(8)] # 8 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img9
+ if i == 0: # center
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ h0, w0 = h, w
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
+ elif i == 1: # top
+ c = s, s - h, s + w, s
+ elif i == 2: # top right
+ c = s + wp, s - h, s + wp + w, s
+ elif i == 3: # right
+ c = s + w0, s, s + w0 + w, s + h
+ elif i == 4: # bottom right
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
+ elif i == 5: # bottom
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
+ elif i == 6: # bottom left
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+ elif i == 7: # left
+ c = s - w, s + h0 - h, s, s + h0
+ elif i == 8: # top left
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+ padx, pady = c[:2]
+ x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
+
+ # Labels
+ x = self.labels[index]
+ labels = x.copy()
+ if x.size > 0: # Normalized xywh to pixel xyxy format
+ labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padx
+ labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + pady
+ labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padx
+ labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + pady
+ labels9.append(labels)
+
+ # Image
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
+ hp, wp = h, w # height, width previous
+
+ # Offset
+ yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border] # mosaic center x, y
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+ # Concat/clip labels
+ if len(labels9):
+ labels9 = np.concatenate(labels9, 0)
+ labels9[:, [1, 3]] -= xc
+ labels9[:, [2, 4]] -= yc
+
+ np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:]) # use with random_perspective
+ # img9, labels9 = replicate(img9, labels9) # replicate
+
+ # Augment
+ img9, labels9 = random_perspective(img9, labels9,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img9, labels9
+
+
+def replicate(img, labels):
+ # Replicate labels
+ h, w = img.shape[:2]
+ boxes = labels[:, 1:].astype(int)
+ x1, y1, x2, y2 = boxes.T
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
+ x1b, y1b, x2b, y2b = boxes[i]
+ bh, bw = y2b - y1b, x2b - x1b
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+ return img, labels
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, auto_size=32):
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, auto_size), np.mod(dh, auto_size) # wh padding
+ elif scaleFill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)
+
+
+def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = img.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(img[:, :, ::-1]) # base
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ if n:
+ # warp points
+ xy = np.ones((n * 4, 3))
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
+ xy = xy @ M.T # transform
+ if perspective:
+ xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
+ else: # affine
+ xy = xy[:, :2].reshape(n, 8)
+
+ # create new boxes
+ x = xy[:, [0, 2, 4, 6]]
+ y = xy[:, [1, 3, 5, 7]]
+ xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+ # # apply angle-based reduction of bounding boxes
+ # radians = a * math.pi / 180
+ # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
+ # x = (xy[:, 2] + xy[:, 0]) / 2
+ # y = (xy[:, 3] + xy[:, 1]) / 2
+ # w = (xy[:, 2] - xy[:, 0]) * reduction
+ # h = (xy[:, 3] - xy[:, 1]) * reduction
+ # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
+
+ # clip boxes
+ xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
+ xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
+ targets = targets[i]
+ targets[:, 1:5] = xy[i]
+
+ return img, targets
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+ ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
+
+
+def cutout(image, labels):
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+ h, w = image.shape[:2]
+
+ def bbox_ioa(box1, box2):
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
+ box2 = box2.transpose()
+
+ # Get the coordinates of bounding boxes
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+
+ # Intersection area
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+ # box2 area
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
+
+ # Intersection over box2 area
+ return inter_area / box2_area
+
+ # create random masks
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
+ for s in scales:
+ mask_h = random.randint(1, int(h * s))
+ mask_w = random.randint(1, int(w * s))
+
+ # box
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
+ xmax = min(w, xmin + mask_w)
+ ymax = min(h, ymin + mask_h)
+
+ # apply random color mask
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+ # return unobscured labels
+ if len(labels) and s > 0.03:
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
+
+ return labels
+
+
+def create_folder(path='./new'):
+ # Create folder
+ if os.path.exists(path):
+ shutil.rmtree(path) # delete output folder
+ os.makedirs(path) # make new output folder
+
+
+def flatten_recursive(path='../coco128'):
+ # Flatten a recursive directory by bringing all files to top level
+ new_path = Path(path + '_flat')
+ create_folder(new_path)
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+ shutil.copyfile(file, new_path / Path(file).name)
+
+
diff --git a/utils/general.py b/utils/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b06c8b8955ab437cb21b5866436f9b228a38439
--- /dev/null
+++ b/utils/general.py
@@ -0,0 +1,449 @@
+# General utils
+
+import glob
+import logging
+import math
+import os
+import platform
+import random
+import re
+import subprocess
+import time
+from pathlib import Path
+
+import cv2
+import matplotlib
+import numpy as np
+import torch
+import yaml
+
+from utils.google_utils import gsutil_getsize
+from utils.metrics import fitness, fitness_p, fitness_r, fitness_ap50, fitness_ap, fitness_f
+from utils.torch_utils import init_torch_seeds
+
+# Set printoptions
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
+matplotlib.rc('font', **{'size': 11})
+
+# Prevent OpenCV from multithreading (to use PyTorch DataLoader)
+cv2.setNumThreads(0)
+
+
+def set_logging(rank=-1):
+ logging.basicConfig(
+ format="%(message)s",
+ level=logging.INFO if rank in [-1, 0] else logging.WARN)
+
+
+def init_seeds(seed=0):
+ random.seed(seed)
+ np.random.seed(seed)
+ init_torch_seeds(seed)
+
+
+def get_latest_run(search_dir='.'):
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+ return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def check_git_status():
+ # Suggest 'git pull' if repo is out of date
+ if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'):
+ s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
+ if 'Your branch is behind' in s:
+ print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
+
+
+def check_img_size(img_size, s=32):
+ # Verify img_size is a multiple of stride s
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
+ if new_size != img_size:
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
+ return new_size
+
+
+def check_file(file):
+ # Search for file if not found
+ if os.path.isfile(file) or file == '':
+ return file
+ else:
+ files = glob.glob('./**/' + file, recursive=True) # find file
+ assert len(files), 'File Not Found: %s' % file # assert file was found
+ assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
+ return files[0] # return file
+
+
+def check_dataset(dict):
+ # Download dataset if not found locally
+ val, s = dict.get('val'), dict.get('download')
+ if val and len(val):
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
+ if not all(x.exists() for x in val):
+ print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
+ if s and len(s): # download script
+ print('Downloading %s ...' % s)
+ if s.startswith('http') and s.endswith('.zip'): # URL
+ f = Path(s).name # filename
+ torch.hub.download_url_to_file(s, f)
+ r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
+ else: # bash script
+ r = os.system(s)
+ print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
+ else:
+ raise Exception('Dataset not found.')
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return math.ceil(x / divisor) * divisor
+
+
+def labels_to_class_weights(labels, nc=80):
+ # Get class weights (inverse frequency) from training labels
+ if labels[0] is None: # no labels loaded
+ return torch.Tensor()
+
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
+
+ # Prepend gridpoint count (for uCE training)
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
+
+ weights[weights == 0] = 1 # replace empty bins with 1
+ weights = 1 / weights # number of targets per class
+ weights /= weights.sum() # normalize
+ return torch.from_numpy(weights)
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+ # Produces image weights based on class mAPs
+ n = len(labels)
+ class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
+ return image_weights
+
+
+def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+ return x
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, :4] /= gain
+ clip_coords(coords, img0_shape)
+ return coords
+
+
+def clip_coords(boxes, img_shape):
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
+
+
+def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, ECIoU=False, eps=1e-9):
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
+ box2 = box2.T
+
+ # Get the coordinates of bounding boxes
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+ else: # transform from xywh to xyxy
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+
+ # Intersection area
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+ # Union Area
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+ union = w1 * h1 + w2 * h2 - inter + eps
+
+ iou = inter / union
+ if GIoU or DIoU or CIoU or EIoU or ECIoU:
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
+ if CIoU or DIoU or EIoU or ECIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
+ if DIoU:
+ return iou - rho2 / c2 # DIoU
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha = v / ((1 + eps) - iou + v)
+ return iou - (rho2 / c2 + v * alpha) # CIoU
+ elif EIoU: # Efficient IoU https://arxiv.org/abs/2101.08158
+ rho3 = (w1-w2) **2
+ c3 = cw ** 2 + eps
+ rho4 = (h1-h2) **2
+ c4 = ch ** 2 + eps
+ return iou - rho2 / c2 - rho3 / c3 - rho4 / c4 # EIoU
+ elif ECIoU:
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha = v / ((1 + eps) - iou + v)
+ rho3 = (w1-w2) **2
+ c3 = cw ** 2 + eps
+ rho4 = (h1-h2) **2
+ c4 = ch ** 2 + eps
+ return iou - v * alpha - rho2 / c2 - rho3 / c3 - rho4 / c4 # ECIoU
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
+ c_area = cw * ch + eps # convex area
+ return iou - (c_area - union) / c_area # GIoU
+ else:
+ return iou # IoU
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def wh_iou(wh1, wh2):
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+ wh1 = wh1[:, None] # [N,1,2]
+ wh2 = wh2[None] # [1,M,2]
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
+ """Performs Non-Maximum Suppression (NMS) on inference results
+
+ Returns:
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
+ """
+
+ nc = prediction[0].shape[1] - 5 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Settings
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
+ max_det = 300 # maximum number of detections per image
+ time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
+
+ t = time.time()
+ output = [torch.zeros(0, 6)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
+ x = x[xc[xi]] # confidence
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, cls)
+ if multi_label:
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Apply finite constraint
+ # if not torch.isfinite(x).all():
+ # x = x[torch.isfinite(x).all(1)]
+
+ # If none remain process next image
+ n = x.shape[0] # number of boxes
+ if not n:
+ continue
+
+ # Sort by confidence
+ # x = x[x[:, 4].argsort(descending=True)]
+
+ # Batched NMS
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torch.ops.torchvision.nms(boxes, scores, iou_thres)
+ if i.shape[0] > max_det: # limit detections
+ i = i[:max_det]
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if (time.time() - t) > time_limit:
+ break # time limit exceeded
+
+ return output
+
+
+def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
+ x = torch.load(f, map_location=torch.device('cpu'))
+ x['optimizer'] = None
+ x['training_results'] = None
+ x['epoch'] = -1
+ #x['model'].half() # to FP16
+ #for p in x['model'].parameters():
+ # p.requires_grad = False
+ torch.save(x, s or f)
+ mb = os.path.getsize(s or f) / 1E6 # filesize
+ print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
+
+
+def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
+
+ if bucket:
+ url = 'gs://%s/evolve.txt' % bucket
+ if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
+ os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
+
+ with open('evolve.txt', 'a') as f: # append result
+ f.write(c + b + '\n')
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
+ x = x[np.argsort(-fitness(x))] # sort
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
+
+ # Save yaml
+ for i, k in enumerate(hyp.keys()):
+ hyp[k] = float(x[0, i + 7])
+ with open(yaml_file, 'w') as f:
+ results = tuple(x[0, :7])
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
+ yaml.dump(hyp, f, sort_keys=False)
+
+ if bucket:
+ os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
+
+
+def apply_classifier(x, model, img, im0):
+ # applies a second stage classifier to yolo outputs
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
+ for i, d in enumerate(x): # per image
+ if d is not None and len(d):
+ d = d.clone()
+
+ # Reshape and pad cutouts
+ b = xyxy2xywh(d[:, :4]) # boxes
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
+ d[:, :4] = xywh2xyxy(b).long()
+
+ # Rescale boxes from img_size to im0 size
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
+
+ # Classes
+ pred_cls1 = d[:, 5].long()
+ ims = []
+ for j, a in enumerate(d): # per item
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+ im = cv2.resize(cutout, (224, 224)) # BGR
+ # cv2.imwrite('test%i.jpg' % j, cutout)
+
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
+ ims.append(im)
+
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
+
+ return x
+
+
+def increment_path(path, exist_ok=True, sep=''):
+ # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
+ path = Path(path) # os-agnostic
+ if (path.exists() and exist_ok) or (not path.exists()):
+ return str(path)
+ else:
+ dirs = glob.glob(f"{path}{sep}*") # similar paths
+ matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
+ i = [int(m.groups()[0]) for m in matches if m] # indices
+ n = max(i) + 1 if i else 2 # increment number
+ return f"{path}{sep}{n}" # update path
diff --git a/utils/google_utils.py b/utils/google_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ff8bbd3241955204cf8885bfcb322b026cd8b16
--- /dev/null
+++ b/utils/google_utils.py
@@ -0,0 +1,120 @@
+# Google utils: https://cloud.google.com/storage/docs/reference/libraries
+
+import os
+import platform
+import subprocess
+import time
+from pathlib import Path
+
+import torch
+
+
+def gsutil_getsize(url=''):
+ # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+ s = subprocess.check_output('gsutil du %s' % url, shell=True).decode('utf-8')
+ return eval(s.split(' ')[0]) if len(s) else 0 # bytes
+
+
+def attempt_download(weights):
+ # Attempt to download pretrained weights if not found locally
+ weights = weights.strip().replace("'", '')
+ file = Path(weights).name
+
+ msg = weights + ' missing, try downloading from https://github.com/WongKinYiu/yolor/releases/'
+ models = ['yolor_p6.pt', 'yolor_w6.pt'] # available models
+
+ if file in models and not os.path.isfile(weights):
+
+ try: # GitHub
+ url = 'https://github.com/WongKinYiu/yolor/releases/download/v1.0/' + file
+ print('Downloading %s to %s...' % (url, weights))
+ torch.hub.download_url_to_file(url, weights)
+ assert os.path.exists(weights) and os.path.getsize(weights) > 1E6 # check
+ except Exception as e: # GCP
+ print('ERROR: Download failure.')
+ print('')
+
+
+def attempt_load(weights, map_location=None):
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+ model = Ensemble()
+ for w in weights if isinstance(weights, list) else [weights]:
+ attempt_download(w)
+ model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
+
+ if len(model) == 1:
+ return model[-1] # return model
+ else:
+ print('Ensemble created with %s\n' % weights)
+ for k in ['names', 'stride']:
+ setattr(model, k, getattr(model[-1], k))
+ return model # return ensemble
+
+
+def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'):
+ # Downloads a file from Google Drive. from utils.google_utils import *; gdrive_download()
+ t = time.time()
+
+ print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
+ os.remove(name) if os.path.exists(name) else None # remove existing
+ os.remove('cookie') if os.path.exists('cookie') else None
+
+ # Attempt file download
+ out = "NUL" if platform.system() == "Windows" else "/dev/null"
+ os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
+ if os.path.exists('cookie'): # large file
+ s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
+ else: # small file
+ s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
+ r = os.system(s) # execute, capture return
+ os.remove('cookie') if os.path.exists('cookie') else None
+
+ # Error check
+ if r != 0:
+ os.remove(name) if os.path.exists(name) else None # remove partial
+ print('Download error ') # raise Exception('Download error')
+ return r
+
+ # Unzip if archive
+ if name.endswith('.zip'):
+ print('unzipping... ', end='')
+ os.system('unzip -q %s' % name) # unzip
+ os.remove(name) # remove zip to free space
+
+ print('Done (%.1fs)' % (time.time() - t))
+ return r
+
+
+def get_token(cookie="./cookie"):
+ with open(cookie) as f:
+ for line in f:
+ if "download" in line:
+ return line.split()[-1]
+ return ""
+
+# def upload_blob(bucket_name, source_file_name, destination_blob_name):
+# # Uploads a file to a bucket
+# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
+#
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(destination_blob_name)
+#
+# blob.upload_from_filename(source_file_name)
+#
+# print('File {} uploaded to {}.'.format(
+# source_file_name,
+# destination_blob_name))
+#
+#
+# def download_blob(bucket_name, source_blob_name, destination_file_name):
+# # Uploads a blob from a bucket
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(source_blob_name)
+#
+# blob.download_to_filename(destination_file_name)
+#
+# print('Blob {} downloaded to {}.'.format(
+# source_blob_name,
+# destination_file_name))
diff --git a/utils/layers.py b/utils/layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..218da9e90c7cac45ade504b45866f8f35fac5163
--- /dev/null
+++ b/utils/layers.py
@@ -0,0 +1,534 @@
+import torch.nn.functional as F
+
+from utils.general import *
+
+import torch
+from torch import nn
+
+try:
+ from mish_cuda import MishCuda as Mish
+
+except:
+ class Mish(nn.Module): # https://github.com/digantamisra98/Mish
+ def forward(self, x):
+ return x * F.softplus(x).tanh()
+
+try:
+ from pytorch_wavelets import DWTForward, DWTInverse
+
+ class DWT(nn.Module):
+ def __init__(self):
+ super(DWT, self).__init__()
+ self.xfm = DWTForward(J=1, wave='db1', mode='zero')
+
+ def forward(self, x):
+ b,c,w,h = x.shape
+ yl, yh = self.xfm(x)
+ return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1)
+
+except: # using Reorg instead
+ class DWT(nn.Module):
+ def forward(self, x):
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
+
+
+class Reorg(nn.Module):
+ def forward(self, x):
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
+
+
+def make_divisible(v, divisor):
+ # Function ensures all layers have a channel number that is divisible by 8
+ # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
+ return math.ceil(v / divisor) * divisor
+
+
+class Flatten(nn.Module):
+ # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
+ def forward(self, x):
+ return x.view(x.size(0), -1)
+
+
+class Concat(nn.Module):
+ # Concatenate a list of tensors along dimension
+ def __init__(self, dimension=1):
+ super(Concat, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return torch.cat(x, self.d)
+
+
+class FeatureConcat(nn.Module):
+ def __init__(self, layers):
+ super(FeatureConcat, self).__init__()
+ self.layers = layers # layer indices
+ self.multiple = len(layers) > 1 # multiple layers flag
+
+ def forward(self, x, outputs):
+ return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]]
+
+
+class FeatureConcat2(nn.Module):
+ def __init__(self, layers):
+ super(FeatureConcat2, self).__init__()
+ self.layers = layers # layer indices
+ self.multiple = len(layers) > 1 # multiple layers flag
+
+ def forward(self, x, outputs):
+ return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach()], 1)
+
+
+class FeatureConcat3(nn.Module):
+ def __init__(self, layers):
+ super(FeatureConcat3, self).__init__()
+ self.layers = layers # layer indices
+ self.multiple = len(layers) > 1 # multiple layers flag
+
+ def forward(self, x, outputs):
+ return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach(), outputs[self.layers[2]].detach()], 1)
+
+
+class FeatureConcat_l(nn.Module):
+ def __init__(self, layers):
+ super(FeatureConcat_l, self).__init__()
+ self.layers = layers # layer indices
+ self.multiple = len(layers) > 1 # multiple layers flag
+
+ def forward(self, x, outputs):
+ return torch.cat([outputs[i][:,:outputs[i].shape[1]//2,:,:] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]][:,:outputs[self.layers[0]].shape[1]//2,:,:]
+
+
+class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers, weight=False):
+ super(WeightedFeatureFusion, self).__init__()
+ self.layers = layers # layer indices
+ self.weight = weight # apply weights boolean
+ self.n = len(layers) + 1 # number of layers
+ if weight:
+ self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights
+
+ def forward(self, x, outputs):
+ # Weights
+ if self.weight:
+ w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1)
+ x = x * w[0]
+
+ # Fusion
+ nx = x.shape[1] # input channels
+ for i in range(self.n - 1):
+ a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add
+ na = a.shape[1] # feature channels
+
+ # Adjust channels
+ if nx == na: # same shape
+ x = x + a
+ elif nx > na: # slice input
+ x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a
+ else: # slice feature
+ x = x + a[:, :nx]
+
+ return x
+
+
+class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
+ def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'):
+ super(MixConv2d, self).__init__()
+
+ groups = len(k)
+ if method == 'equal_ch': # equal channels per group
+ i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices
+ ch = [(i == g).sum() for g in range(groups)]
+ else: # 'equal_params': equal parameter count per group
+ b = [out_ch] + [0] * groups
+ a = np.eye(groups + 1, groups, k=-1)
+ a -= np.roll(a, 1, axis=1)
+ a *= np.array(k) ** 2
+ a[0] = 1
+ ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b
+
+ self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch,
+ out_channels=ch[g],
+ kernel_size=k[g],
+ stride=stride,
+ padding=k[g] // 2, # 'same' pad
+ dilation=dilation,
+ bias=bias) for g in range(groups)])
+
+ def forward(self, x):
+ return torch.cat([m(x) for m in self.m], 1)
+
+
+# Activation functions below -------------------------------------------------------------------------------------------
+class SwishImplementation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x * torch.sigmoid(x)
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x) # sigmoid(ctx)
+ return grad_output * (sx * (1 + x * (1 - sx)))
+
+
+class MishImplementation(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ fx = F.softplus(x).tanh()
+ return grad_output * (fx + x * sx * (1 - fx * fx))
+
+
+class MemoryEfficientSwish(nn.Module):
+ def forward(self, x):
+ return SwishImplementation.apply(x)
+
+
+class MemoryEfficientMish(nn.Module):
+ def forward(self, x):
+ return MishImplementation.apply(x)
+
+
+class Swish(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
+ def forward(self, x):
+ return x * F.hardtanh(x + 3, 0., 6., True) / 6.
+
+
+class DeformConv2d(nn.Module):
+ def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False):
+ """
+ Args:
+ modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2).
+ """
+ super(DeformConv2d, self).__init__()
+ self.kernel_size = kernel_size
+ self.padding = padding
+ self.stride = stride
+ self.zero_padding = nn.ZeroPad2d(padding)
+ self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias)
+
+ self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
+ nn.init.constant_(self.p_conv.weight, 0)
+ self.p_conv.register_backward_hook(self._set_lr)
+
+ self.modulation = modulation
+ if modulation:
+ self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
+ nn.init.constant_(self.m_conv.weight, 0)
+ self.m_conv.register_backward_hook(self._set_lr)
+
+ @staticmethod
+ def _set_lr(module, grad_input, grad_output):
+ grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
+ grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
+
+ def forward(self, x):
+ offset = self.p_conv(x)
+ if self.modulation:
+ m = torch.sigmoid(self.m_conv(x))
+
+ dtype = offset.data.type()
+ ks = self.kernel_size
+ N = offset.size(1) // 2
+
+ if self.padding:
+ x = self.zero_padding(x)
+
+ # (b, 2N, h, w)
+ p = self._get_p(offset, dtype)
+
+ # (b, h, w, 2N)
+ p = p.contiguous().permute(0, 2, 3, 1)
+ q_lt = p.detach().floor()
+ q_rb = q_lt + 1
+
+ q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long()
+ q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long()
+ q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
+ q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
+
+ # clip p
+ p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1)
+
+ # bilinear kernel (b, h, w, N)
+ g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
+ g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
+ g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
+ g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
+
+ # (b, c, h, w, N)
+ x_q_lt = self._get_x_q(x, q_lt, N)
+ x_q_rb = self._get_x_q(x, q_rb, N)
+ x_q_lb = self._get_x_q(x, q_lb, N)
+ x_q_rt = self._get_x_q(x, q_rt, N)
+
+ # (b, c, h, w, N)
+ x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
+ g_rb.unsqueeze(dim=1) * x_q_rb + \
+ g_lb.unsqueeze(dim=1) * x_q_lb + \
+ g_rt.unsqueeze(dim=1) * x_q_rt
+
+ # modulation
+ if self.modulation:
+ m = m.contiguous().permute(0, 2, 3, 1)
+ m = m.unsqueeze(dim=1)
+ m = torch.cat([m for _ in range(x_offset.size(1))], dim=1)
+ x_offset *= m
+
+ x_offset = self._reshape_x_offset(x_offset, ks)
+ out = self.conv(x_offset)
+
+ return out
+
+ def _get_p_n(self, N, dtype):
+ p_n_x, p_n_y = torch.meshgrid(
+ torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1),
+ torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1))
+ # (2N, 1)
+ p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0)
+ p_n = p_n.view(1, 2*N, 1, 1).type(dtype)
+
+ return p_n
+
+ def _get_p_0(self, h, w, N, dtype):
+ p_0_x, p_0_y = torch.meshgrid(
+ torch.arange(1, h*self.stride+1, self.stride),
+ torch.arange(1, w*self.stride+1, self.stride))
+ p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
+ p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
+ p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
+
+ return p_0
+
+ def _get_p(self, offset, dtype):
+ N, h, w = offset.size(1)//2, offset.size(2), offset.size(3)
+
+ # (1, 2N, 1, 1)
+ p_n = self._get_p_n(N, dtype)
+ # (1, 2N, h, w)
+ p_0 = self._get_p_0(h, w, N, dtype)
+ p = p_0 + p_n + offset
+ return p
+
+ def _get_x_q(self, x, q, N):
+ b, h, w, _ = q.size()
+ padded_w = x.size(3)
+ c = x.size(1)
+ # (b, c, h*w)
+ x = x.contiguous().view(b, c, -1)
+
+ # (b, h, w, N)
+ index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y
+ # (b, c, h*w*N)
+ index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
+
+ x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
+
+ return x_offset
+
+ @staticmethod
+ def _reshape_x_offset(x_offset, ks):
+ b, c, h, w, N = x_offset.size()
+ x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1)
+ x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks)
+
+ return x_offset
+
+
+class GAP(nn.Module):
+ def __init__(self):
+ super(GAP, self).__init__()
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
+ def forward(self, x):
+ #b, c, _, _ = x.size()
+ return self.avg_pool(x)#.view(b, c)
+
+
+class Silence(nn.Module):
+ def __init__(self):
+ super(Silence, self).__init__()
+ def forward(self, x):
+ return x
+
+
+class ScaleChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ScaleChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return x.expand_as(a) * a
+
+
+class ShiftChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ShiftChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return a.expand_as(x) + x
+
+
+class ShiftChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ShiftChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return a.expand_as(x) + x
+
+
+class ControlChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ControlChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return a.expand_as(x) * x
+
+
+class ControlChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ControlChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return a.expand_as(x) * x
+
+
+class AlternateChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(AlternateChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return torch.cat([a.expand_as(x), x], dim=1)
+
+
+class AlternateChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(AlternateChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return torch.cat([a.expand_as(x), x], dim=1)
+
+
+class SelectChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(SelectChannel, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return a.sigmoid().expand_as(x) * x
+
+
+class SelectChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(SelectChannel2D, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]].view(1,-1,1,1)
+ return a.sigmoid().expand_as(x) * x
+
+
+class ScaleSpatial(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, layers):
+ super(ScaleSpatial, self).__init__()
+ self.layers = layers # layer indices
+
+ def forward(self, x, outputs):
+ a = outputs[self.layers[0]]
+ return x * a
+
+
+class ImplicitA(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitA, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+class ImplicitC(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitC, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+class ImplicitM(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitM, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, mean=1., std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+
+class Implicit2DA(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DA, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+class Implicit2DC(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DC, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+class Implicit2DM(nn.Module):
+ def __init__(self, atom, channel):
+ super(Implicit2DM, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1))
+ nn.init.normal_(self.implicit, mean=1., std=.02)
+
+ def forward(self):
+ return self.implicit
+
+
+
\ No newline at end of file
diff --git a/utils/loss.py b/utils/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..8eeb60bdf7a777bb10b136e334d9331ebdd040b2
--- /dev/null
+++ b/utils/loss.py
@@ -0,0 +1,173 @@
+# Loss functions
+
+import torch
+import torch.nn as nn
+
+from utils.general import bbox_iou
+from utils.torch_utils import is_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+ # BCEwithLogitLoss() with reduced missing label effects.
+ def __init__(self, alpha=0.05):
+ super(BCEBlurWithLogitsLoss, self).__init__()
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
+ self.alpha = alpha
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ pred = torch.sigmoid(pred) # prob from logits
+ dx = pred - true # reduce only missing label effects
+ # dx = (pred - true).abs() # reduce missing label and false label effects
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+ loss *= alpha_factor
+ return loss.mean()
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super(FocalLoss, self).__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+def compute_loss(p, targets, model): # predictions, targets, model
+ device = targets.device
+ #print(device)
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+ tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ cp, cn = smooth_BCE(eps=0.0)
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ # Losses
+ nt = 0 # number of targets
+ no = len(p) # number of outputs
+ balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
+ balance = [4.0, 1.0, 0.5, 0.4, 0.1] if no == 5 else balance
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ nt += n # cumulative targets
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
+
+ # Regression
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
+ iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
+
+ # Classification
+ if model.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(ps[:, 5:], cn, device=device) # targets
+ t[range(n), tcls[i]] = cp
+ lcls += BCEcls(ps[:, 5:], t) # BCE
+
+ # Append targets to text file
+ # with open('targets.txt', 'a') as file:
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+ lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
+
+ s = 3 / no # output count scaling
+ lbox *= h['box'] * s
+ lobj *= h['obj'] * s * (1.4 if no >= 4 else 1.)
+ lcls *= h['cls'] * s
+ bs = tobj.shape[0] # batch size
+
+ loss = lbox + lobj + lcls
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
+
+
+def build_targets(p, targets, model):
+ nt = targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices, anch = [], [], [], []
+ gain = torch.ones(6, device=targets.device) # normalized to gridspace gain
+ off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() # overlap offsets
+
+ g = 0.5 # offset
+ multi_gpu = is_parallel(model)
+ for i, jj in enumerate(model.module.yolo_layers if multi_gpu else model.yolo_layers):
+ # get number of grid points and anchor vec for this yolo layer
+ anchors = model.module.module_list[jj].anchor_vec if multi_gpu else model.module_list[jj].anchor_vec
+ gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ a, t, offsets = [], targets * gain, 0
+ if nt:
+ na = anchors.shape[0] # number of anchors
+ at = torch.arange(na).view(na, 1).repeat(1, nt) # anchor tensor, same as .repeat_interleave(nt)
+ r = t[None, :, 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
+ a, t = at[j], t.repeat(na, 1, 1)[j] # filter
+
+ # overlaps
+ gxy = t[:, 2:4] # grid xy
+ z = torch.zeros_like(gxy)
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
+ l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T
+ a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0)
+ offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g
+
+ # Define
+ b, c = t[:, :2].long().T # image, class
+ gxy = t[:, 2:4] # grid xy
+ gwh = t[:, 4:6] # grid wh
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid xy indices
+
+ # Append
+ #indices.append((b, a, gj, gi)) # image, anchor, grid indices
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ anch.append(anchors[a]) # anchors
+ tcls.append(c) # class
+
+ return tcls, tbox, indices, anch
+
diff --git a/utils/metrics.py b/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..004090b0b583d3786811c1766e11a4748c86522d
--- /dev/null
+++ b/utils/metrics.py
@@ -0,0 +1,140 @@
+# Model validation metrics
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def fitness_p(x):
+ # Model fitness as a weighted combination of metrics
+ w = [1.0, 0.0, 0.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def fitness_r(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 1.0, 0.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def fitness_ap50(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 1.0, 0.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def fitness_ap(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def fitness_f(x):
+ # Model fitness as a weighted combination of metrics
+ #w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return ((x[:, 0]*x[:, 1])/(x[:, 0]+x[:, 1]))
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
+ """ Compute the average precision, given the recall and precision curves.
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+ # Arguments
+ tp: True positives (nparray, nx1 or nx10).
+ conf: Objectness value from 0-1 (nparray).
+ pred_cls: Predicted object classes (nparray).
+ target_cls: True object classes (nparray).
+ plot: Plot precision-recall curve at mAP@0.5
+ fname: Plot filename
+ # Returns
+ The average precision as computed in py-faster-rcnn.
+ """
+
+ # Sort by objectness
+ i = np.argsort(-conf)
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+ # Find unique classes
+ unique_classes = np.unique(target_cls)
+
+ # Create Precision-Recall curve and compute AP for each class
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
+ pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
+ s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
+ ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
+ for ci, c in enumerate(unique_classes):
+ i = pred_cls == c
+ n_l = (target_cls == c).sum() # number of labels
+ n_p = i.sum() # number of predictions
+
+ if n_p == 0 or n_l == 0:
+ continue
+ else:
+ # Accumulate FPs and TPs
+ fpc = (1 - tp[i]).cumsum(0)
+ tpc = tp[i].cumsum(0)
+
+ # Recall
+ recall = tpc / (n_l + 1e-16) # recall curve
+ r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
+
+ # Precision
+ precision = tpc / (tpc + fpc) # precision curve
+ p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
+
+ # AP from recall-precision curve
+ for j in range(tp.shape[1]):
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+ if j == 0:
+ py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
+
+ # Compute F1 score (harmonic mean of precision and recall)
+ f1 = 2 * p * r / (p + r + 1e-16)
+
+ if plot:
+ py = np.stack(py, axis=1)
+ fig, ax = plt.subplots(1, 1, figsize=(5, 5))
+ ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision)
+ ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+ ax.set_xlabel('Recall')
+ ax.set_ylabel('Precision')
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend()
+ fig.tight_layout()
+ fig.savefig(fname, dpi=200)
+
+ return p, r, ap, f1, unique_classes.astype('int32')
+
+
+def compute_ap(recall, precision):
+ """ Compute the average precision, given the recall and precision curves.
+ Source: https://github.com/rbgirshick/py-faster-rcnn.
+ # Arguments
+ recall: The recall curve (list).
+ precision: The precision curve (list).
+ # Returns
+ The average precision as computed in py-faster-rcnn.
+ """
+
+ # Append sentinel values to beginning and end
+ mrec = np.concatenate(([0.0], recall, [1.0]))
+ mpre = np.concatenate(([1.0], precision, [0.0]))
+
+ # Compute the precision envelope
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+ # Integrate area under curve
+ method = 'interp' # methods: 'continuous', 'interp'
+ if method == 'interp':
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
+ else: # 'continuous'
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
+
+ return ap, mpre, mrec
diff --git a/utils/parse_config.py b/utils/parse_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6cbfdd81f54c7017bcd35bfeccca7f6578f25ae
--- /dev/null
+++ b/utils/parse_config.py
@@ -0,0 +1,71 @@
+import os
+
+import numpy as np
+
+
+def parse_model_cfg(path):
+ # Parse the yolo *.cfg file and return module definitions path may be 'cfg/yolov3.cfg', 'yolov3.cfg', or 'yolov3'
+ if not path.endswith('.cfg'): # add .cfg suffix if omitted
+ path += '.cfg'
+ if not os.path.exists(path) and os.path.exists('cfg' + os.sep + path): # add cfg/ prefix if omitted
+ path = 'cfg' + os.sep + path
+
+ with open(path, 'r') as f:
+ lines = f.read().split('\n')
+ lines = [x for x in lines if x and not x.startswith('#')]
+ lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
+ mdefs = [] # module definitions
+ for line in lines:
+ if line.startswith('['): # This marks the start of a new block
+ mdefs.append({})
+ mdefs[-1]['type'] = line[1:-1].rstrip()
+ if mdefs[-1]['type'] == 'convolutional':
+ mdefs[-1]['batch_normalize'] = 0 # pre-populate with zeros (may be overwritten later)
+
+ else:
+ key, val = line.split("=")
+ key = key.rstrip()
+
+ if key == 'anchors': # return nparray
+ mdefs[-1][key] = np.array([float(x) for x in val.split(',')]).reshape((-1, 2)) # np anchors
+ elif (key in ['from', 'layers', 'mask']) or (key == 'size' and ',' in val): # return array
+ mdefs[-1][key] = [int(x) for x in val.split(',')]
+ else:
+ val = val.strip()
+ if val.isnumeric(): # return int or float
+ mdefs[-1][key] = int(val) if (int(val) - float(val)) == 0 else float(val)
+ else:
+ mdefs[-1][key] = val # return string
+
+ # Check all fields are supported
+ supported = ['type', 'batch_normalize', 'filters', 'size', 'stride', 'pad', 'activation', 'layers', 'groups',
+ 'from', 'mask', 'anchors', 'classes', 'num', 'jitter', 'ignore_thresh', 'truth_thresh', 'random',
+ 'stride_x', 'stride_y', 'weights_type', 'weights_normalization', 'scale_x_y', 'beta_nms', 'nms_kind',
+ 'iou_loss', 'iou_normalizer', 'cls_normalizer', 'iou_thresh', 'atoms', 'na', 'nc']
+
+ f = [] # fields
+ for x in mdefs[1:]:
+ [f.append(k) for k in x if k not in f]
+ u = [x for x in f if x not in supported] # unsupported fields
+ assert not any(u), "Unsupported fields %s in %s. See https://github.com/ultralytics/yolov3/issues/631" % (u, path)
+
+ return mdefs
+
+
+def parse_data_cfg(path):
+ # Parses the data configuration file
+ if not os.path.exists(path) and os.path.exists('data' + os.sep + path): # add data/ prefix if omitted
+ path = 'data' + os.sep + path
+
+ with open(path, 'r') as f:
+ lines = f.readlines()
+
+ options = dict()
+ for line in lines:
+ line = line.strip()
+ if line == '' or line.startswith('#'):
+ continue
+ key, val = line.split('=')
+ options[key.strip()] = val.strip()
+
+ return options
diff --git a/utils/plots.py b/utils/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..c90a96b8fabbf7d4d3f0c88a927199ccc3858a96
--- /dev/null
+++ b/utils/plots.py
@@ -0,0 +1,380 @@
+# Plotting utils
+
+import glob
+import math
+import os
+import random
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+import yaml
+from PIL import Image
+from scipy.signal import butter, filtfilt
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import fitness
+
+# Settings
+matplotlib.use('Agg') # for writing to files only
+
+
+def color_list():
+ # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
+ def hex2rgb(h):
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+ return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
+
+
+def hist2d(x, y, n=100):
+ # 2d histogram used in labels.png and evolve.png
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+ return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+ def butter_lowpass(cutoff, fs, order):
+ nyq = 0.5 * fs
+ normal_cutoff = cutoff / nyq
+ return butter(order, normal_cutoff, btype='low', analog=False)
+
+ b, a = butter_lowpass(cutoff, fs, order=order)
+ return filtfilt(b, a, data) # forward-backward filter
+
+
+def plot_one_box(x, img, color=None, label=None, line_thickness=None):
+ # Plots one bounding box on image img
+ tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
+ color = color or [random.randint(0, 255) for _ in range(3)]
+ c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
+ cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
+ if label:
+ tf = max(tl - 1, 1) # font thickness
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
+ cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
+ cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
+
+
+def plot_wh_methods(): # from utils.general import *; plot_wh_methods()
+ # Compares the two methods for width-height anchor multiplication
+ # https://github.com/ultralytics/yolov3/issues/168
+ x = np.arange(-4.0, 4.0, .1)
+ ya = np.exp(x)
+ yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
+
+ fig = plt.figure(figsize=(6, 3), dpi=150)
+ plt.plot(x, ya, '.-', label='YOLO')
+ plt.plot(x, yb ** 2, '.-', label='YOLO ^2')
+ plt.plot(x, yb ** 1.6, '.-', label='YOLO ^1.6')
+ plt.xlim(left=-4, right=4)
+ plt.ylim(bottom=0, top=6)
+ plt.xlabel('input')
+ plt.ylabel('output')
+ plt.grid()
+ plt.legend()
+ fig.tight_layout()
+ fig.savefig('comparison.png', dpi=200)
+
+
+def output_to_target(output, width, height):
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
+ if isinstance(output, torch.Tensor):
+ output = output.cpu().numpy()
+
+ targets = []
+ for i, o in enumerate(output):
+ if o is not None:
+ for pred in o:
+ box = pred[:4]
+ w = (box[2] - box[0]) / width
+ h = (box[3] - box[1]) / height
+ x = box[0] / width + w / 2
+ y = box[1] / height + h / 2
+ conf = pred[4]
+ cls = int(pred[5])
+
+ targets.append([i, cls, x, y, w, h, conf])
+
+ return np.array(targets)
+
+
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
+ # Plot image grid with labels
+
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+
+ # un-normalise
+ if np.max(images[0]) <= 1:
+ images *= 255
+
+ tl = 3 # line thickness
+ tf = max(tl - 1, 1) # font thickness
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+
+ # Check if we should resize
+ scale_factor = max_size / max(h, w)
+ if scale_factor < 1:
+ h = math.ceil(scale_factor * h)
+ w = math.ceil(scale_factor * w)
+
+ colors = color_list() # list of colors
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, img in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+
+ block_x = int(w * (i // ns))
+ block_y = int(h * (i % ns))
+
+ img = img.transpose(1, 2, 0)
+ if scale_factor < 1:
+ img = cv2.resize(img, (w, h))
+
+ mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
+ if len(targets) > 0:
+ image_targets = targets[targets[:, 0] == i]
+ boxes = xywh2xyxy(image_targets[:, 2:6]).T
+ classes = image_targets[:, 1].astype('int')
+ labels = image_targets.shape[1] == 6 # labels if no conf column
+ conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
+
+ boxes[[0, 2]] *= w
+ boxes[[0, 2]] += block_x
+ boxes[[1, 3]] *= h
+ boxes[[1, 3]] += block_y
+ for j, box in enumerate(boxes.T):
+ cls = int(classes[j])
+ color = colors[cls % len(colors)]
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
+ plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
+
+ # Draw image filename labels
+ if paths:
+ label = Path(paths[i]).name[:40] # trim to 40 char
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
+ lineType=cv2.LINE_AA)
+
+ # Image border
+ cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
+
+ if fname:
+ r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
+ mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
+ # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
+ Image.fromarray(mosaic).save(fname) # PIL save
+ return mosaic
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+ # Plot LR simulating training for full epochs
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
+ y = []
+ for _ in range(epochs):
+ scheduler.step()
+ y.append(optimizer.param_groups[0]['lr'])
+ plt.plot(y, '.-', label='LR')
+ plt.xlabel('epoch')
+ plt.ylabel('LR')
+ plt.grid()
+ plt.xlim(0, epochs)
+ plt.ylim(0)
+ plt.tight_layout()
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+
+
+def plot_test_txt(): # from utils.general import *; plot_test()
+ # Plot test.txt histograms
+ x = np.loadtxt('test.txt', dtype=np.float32)
+ box = xyxy2xywh(x[:, :4])
+ cx, cy = box[:, 0], box[:, 1]
+
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+ ax.set_aspect('equal')
+ plt.savefig('hist2d.png', dpi=300)
+
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+ ax[0].hist(cx, bins=600)
+ ax[1].hist(cy, bins=600)
+ plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt(): # from utils.general import *; plot_targets_txt()
+ # Plot targets.txt histograms
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(4):
+ ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
+ ax[i].legend()
+ ax[i].set_title(s[i])
+ plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_study_txt(f='study.txt', x=None): # from utils.general import *; plot_study_txt()
+ # Plot study.txt generated by test.py
+ fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
+ ax = ax.ravel()
+
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+ for f in ['study/study_coco_yolo%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
+ s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
+ for i in range(7):
+ ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+ ax[i].set_title(s[i])
+
+ j = y[3].argmax() + 1
+ ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
+ label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+ 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
+
+ ax2.grid()
+ ax2.set_xlim(0, 30)
+ ax2.set_ylim(28, 50)
+ ax2.set_yticks(np.arange(30, 55, 5))
+ ax2.set_xlabel('GPU Speed (ms/img)')
+ ax2.set_ylabel('COCO AP val')
+ ax2.legend(loc='lower right')
+ plt.savefig('study_mAP_latency.png', dpi=300)
+ plt.savefig(f.replace('.txt', '.png'), dpi=300)
+
+
+def plot_labels(labels, save_dir=''):
+ # plot dataset labels
+ c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
+ nc = int(c.max() + 1) # number of classes
+
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+ ax = ax.ravel()
+ ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+ ax[0].set_xlabel('classes')
+ ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
+ ax[1].set_xlabel('x')
+ ax[1].set_ylabel('y')
+ ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
+ ax[2].set_xlabel('width')
+ ax[2].set_ylabel('height')
+ plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
+ plt.close()
+
+ # seaborn correlogram
+ try:
+ import seaborn as sns
+ import pandas as pd
+ x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+ sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o',
+ plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02),
+ diag_kws=dict(bins=50))
+ plt.savefig(Path(save_dir) / 'labels_correlogram.png', dpi=200)
+ plt.close()
+ except Exception as e:
+ pass
+
+
+def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general import *; plot_evolution()
+ # Plot hyperparameter evolution results in evolve.txt
+ with open(yaml_file) as f:
+ hyp = yaml.load(f, Loader=yaml.FullLoader)
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ f = fitness(x)
+ # weights = (f - f.min()) ** 2 # for weighted results
+ plt.figure(figsize=(10, 12), tight_layout=True)
+ matplotlib.rc('font', **{'size': 8})
+ for i, (k, v) in enumerate(hyp.items()):
+ y = x[:, i + 7]
+ # mu = (y * weights).sum() / weights.sum() # best weighted result
+ mu = y[f.argmax()] # best single result
+ plt.subplot(6, 5, i + 1)
+ plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+ plt.plot(mu, f.max(), 'k+', markersize=15)
+ plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
+ if i % 5 != 0:
+ plt.yticks([])
+ print('%15s: %.3g' % (k, mu))
+ plt.savefig('evolve.png', dpi=200)
+ print('\nPlot saved as evolve.png')
+
+
+def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
+ # Plot training 'results*.txt', overlaying train and val losses
+ s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
+ t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
+ for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(5):
+ for j in [i, i + 5]:
+ y = results[j, x]
+ ax[i].plot(x, y, marker='.', label=s[j])
+ # y_smooth = butter_lowpass_filtfilt(y)
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
+
+ ax[i].set_title(t[i])
+ ax[i].legend()
+ ax[i].set_ylabel(f) if i == 0 else None # add filename
+ fig.savefig(f.replace('.txt', '.png'), dpi=200)
+
+
+def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
+ # from utils.general import *; plot_results(save_dir='runs/train/exp0')
+ # Plot training 'results*.txt'
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6))
+ ax = ax.ravel()
+ s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
+ 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
+ if bucket:
+ # os.system('rm -rf storage.googleapis.com')
+ # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
+ files = ['%g.txt' % x for x in id]
+ c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/%g.txt' % (bucket, x) for x in id)
+ os.system(c)
+ else:
+ files = glob.glob(str(Path(save_dir) / '*.txt')) + glob.glob('../../Downloads/results*.txt')
+ assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ for i in range(10):
+ y = results[i, x]
+ if i in [0, 1, 2, 5, 6, 7]:
+ y[y == 0] = np.nan # don't show zero loss values
+ # y /= y[0] # normalize
+ label = labels[fi] if len(labels) else Path(f).stem
+ ax[i].plot(x, y, marker='.', label=label, linewidth=1, markersize=6)
+ ax[i].set_title(s[i])
+ # if i in [5, 6, 7]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ print('Warning: Plotting error for %s; %s' % (f, e))
+
+ fig.tight_layout()
+ ax[1].legend()
+ fig.savefig(Path(save_dir) / 'results.png', dpi=200)
diff --git a/utils/torch_utils.py b/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..4d07baa9f06de6b32eb79ab5034f16d094aa6d67
--- /dev/null
+++ b/utils/torch_utils.py
@@ -0,0 +1,240 @@
+# PyTorch utils
+
+import logging
+import math
+import os
+import time
+from contextlib import contextmanager
+from copy import deepcopy
+
+import torch
+import torch.backends.cudnn as cudnn
+import torch.nn as nn
+import torch.nn.functional as F
+import torchvision
+
+logger = logging.getLogger(__name__)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+ """
+ Decorator to make all processes in distributed training wait for each local_master to do something.
+ """
+ if local_rank not in [-1, 0]:
+ torch.distributed.barrier()
+ yield
+ if local_rank == 0:
+ torch.distributed.barrier()
+
+
+def init_torch_seeds(seed=0):
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
+ torch.manual_seed(seed)
+ if seed == 0: # slower, more reproducible
+ cudnn.deterministic = True
+ cudnn.benchmark = False
+ else: # faster, less reproducible
+ cudnn.deterministic = False
+ cudnn.benchmark = True
+
+
+def select_device(device='', batch_size=None):
+ # device = 'cpu' or '0' or '0,1,2,3'
+ cpu_request = device.lower() == 'cpu'
+ if device and not cpu_request: # if device requested other than 'cpu'
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
+ assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
+
+ cuda = False if cpu_request else torch.cuda.is_available()
+ if cuda:
+ c = 1024 ** 2 # bytes to MB
+ ng = torch.cuda.device_count()
+ if ng > 1 and batch_size: # check that batch_size is compatible with device_count
+ assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
+ x = [torch.cuda.get_device_properties(i) for i in range(ng)]
+ s = f'Using torch {torch.__version__} '
+ for i in range(0, ng):
+ if i == 1:
+ s = ' ' * len(s)
+ logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
+ else:
+ logger.info(f'Using torch {torch.__version__} CPU')
+
+ logger.info('') # skip a line
+ return torch.device('cuda:0' if cuda else 'cpu')
+
+
+def time_synchronized():
+ torch.cuda.synchronize() if torch.cuda.is_available() else None
+ return time.time()
+
+
+def is_parallel(model):
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def intersect_dicts(da, db, exclude=()):
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
+
+
+def initialize_weights(model):
+ for m in model.modules():
+ t = type(m)
+ if t is nn.Conv2d:
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+ elif t is nn.BatchNorm2d:
+ m.eps = 1e-3
+ m.momentum = 0.03
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
+ m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+ # Finds layer indices matching module class 'mclass'
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+ # Return global model sparsity
+ a, b = 0., 0.
+ for p in model.parameters():
+ a += p.numel()
+ b += (p == 0).sum()
+ return b / a
+
+
+def prune(model, amount=0.3):
+ # Prune model to requested global sparsity
+ import torch.nn.utils.prune as prune
+ print('Pruning model... ', end='')
+ for name, m in model.named_modules():
+ if isinstance(m, nn.Conv2d):
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
+ prune.remove(m, 'weight') # make permanent
+ print(' %.3g global sparsity' % sparsity(model))
+
+
+def fuse_conv_and_bn(conv, bn):
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ fusedconv = nn.Conv2d(conv.in_channels,
+ conv.out_channels,
+ kernel_size=conv.kernel_size,
+ stride=conv.stride,
+ padding=conv.padding,
+ groups=conv.groups,
+ bias=True).requires_grad_(False).to(conv.weight.device)
+
+ # prepare filters
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
+
+ # prepare spatial bias
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+ return fusedconv
+
+
+def model_info(model, verbose=False, img_size=640):
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
+ if verbose:
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
+ for i, (name, p) in enumerate(model.named_parameters()):
+ name = name.replace('module_list.', '')
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+ try: # FLOPS
+ from thop import profile
+ flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, img_size, img_size),), verbose=False)[0] / 1E9 * 2
+ img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
+ fs = ', %.9f GFLOPS' % (flops) # 640x640 FLOPS
+ except (ImportError, Exception):
+ fs = ''
+
+ logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def load_classifier(name='resnet101', n=2):
+ # Loads a pretrained model reshaped to n-class output
+ model = torchvision.models.__dict__[name](pretrained=True)
+
+ # ResNet model properties
+ # input_size = [3, 224, 224]
+ # input_space = 'RGB'
+ # input_range = [0, 1]
+ # mean = [0.485, 0.456, 0.406]
+ # std = [0.229, 0.224, 0.225]
+
+ # Reshape output to n classes
+ filters = model.fc.weight.shape[1]
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
+ model.fc.out_features = n
+ return model
+
+
+def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
+ # scales img(bs,3,y,x) by ratio
+ if ratio == 1.0:
+ return img
+ else:
+ h, w = img.shape[2:]
+ s = (int(h * ratio), int(w * ratio)) # new size
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
+ if not same_shape: # pad/crop img
+ gs = 32 # (pixels) grid size
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
+ for k, v in b.__dict__.items():
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+ continue
+ else:
+ setattr(a, k, v)
+
+
+class ModelEMA:
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
+ This is intended to allow functionality like
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+ A smoothed version of the weights is necessary for some training schemes to perform well.
+ This class is sensitive where it is initialized in the sequence of model init,
+ GPU assignment and distributed training wrappers.
+ """
+
+ def __init__(self, model, decay=0.9999, updates=0):
+ # Create EMA
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
+ # if next(model.parameters()).device.type != 'cpu':
+ # self.ema.half() # FP16 EMA
+ self.updates = updates # number of EMA updates
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
+ for p in self.ema.parameters():
+ p.requires_grad_(False)
+
+ def update(self, model):
+ # Update EMA parameters
+ with torch.no_grad():
+ self.updates += 1
+ d = self.decay(self.updates)
+
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
+ for k, v in self.ema.state_dict().items():
+ if v.dtype.is_floating_point:
+ v *= d
+ v += (1. - d) * msd[k].detach()
+
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+ # Update EMA attributes
+ copy_attr(self.ema, model, include, exclude)