# Google utils: https://cloud.google.com/storage/docs/reference/libraries import os import platform import subprocess import time from pathlib import Path import torch def gsutil_getsize(url=''): # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du s = subprocess.check_output('gsutil du %s' % url, shell=True).decode('utf-8') return eval(s.split(' ')[0]) if len(s) else 0 # bytes def attempt_download(weights): # Attempt to download pretrained weights if not found locally weights = weights.strip().replace("'", '') file = Path(weights).name msg = weights + ' missing, try downloading from https://github.com/WongKinYiu/yolor/releases/' models = ['yolor_p6.pt', 'yolor_w6.pt'] # available models if file in models and not os.path.isfile(weights): try: # GitHub url = 'https://github.com/WongKinYiu/yolor/releases/download/v1.0/' + file print('Downloading %s to %s...' % (url, weights)) torch.hub.download_url_to_file(url, weights) assert os.path.exists(weights) and os.path.getsize(weights) > 1E6 # check except Exception as e: # GCP print('ERROR: Download failure.') print('') def attempt_load(weights, map_location=None): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: attempt_download(w) model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model if len(model) == 1: return model[-1] # return model else: print('Ensemble created with %s\n' % weights) for k in ['names', 'stride']: setattr(model, k, getattr(model[-1], k)) return model # return ensemble def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'): # Downloads a file from Google Drive. from utils.google_utils import *; gdrive_download() t = time.time() print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='') os.remove(name) if os.path.exists(name) else None # remove existing os.remove('cookie') if os.path.exists('cookie') else None # Attempt file download out = "NUL" if platform.system() == "Windows" else "/dev/null" os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out)) if os.path.exists('cookie'): # large file s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name) else: # small file s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id) r = os.system(s) # execute, capture return os.remove('cookie') if os.path.exists('cookie') else None # Error check if r != 0: os.remove(name) if os.path.exists(name) else None # remove partial print('Download error ') # raise Exception('Download error') return r # Unzip if archive if name.endswith('.zip'): print('unzipping... ', end='') os.system('unzip -q %s' % name) # unzip os.remove(name) # remove zip to free space print('Done (%.1fs)' % (time.time() - t)) return r def get_token(cookie="./cookie"): with open(cookie) as f: for line in f: if "download" in line: return line.split()[-1] return "" # def upload_blob(bucket_name, source_file_name, destination_blob_name): # # Uploads a file to a bucket # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python # # storage_client = storage.Client() # bucket = storage_client.get_bucket(bucket_name) # blob = bucket.blob(destination_blob_name) # # blob.upload_from_filename(source_file_name) # # print('File {} uploaded to {}.'.format( # source_file_name, # destination_blob_name)) # # # def download_blob(bucket_name, source_blob_name, destination_file_name): # # Uploads a blob from a bucket # storage_client = storage.Client() # bucket = storage_client.get_bucket(bucket_name) # blob = bucket.blob(source_blob_name) # # blob.download_to_filename(destination_file_name) # # print('Blob {} downloaded to {}.'.format( # source_blob_name, # destination_file_name))