import torch.nn.functional as F from utils.general import * import torch from torch import nn try: from mish_cuda import MishCuda as Mish except: class Mish(nn.Module): # https://github.com/digantamisra98/Mish def forward(self, x): return x * F.softplus(x).tanh() try: from pytorch_wavelets import DWTForward, DWTInverse class DWT(nn.Module): def __init__(self): super(DWT, self).__init__() self.xfm = DWTForward(J=1, wave='db1', mode='zero') def forward(self, x): b,c,w,h = x.shape yl, yh = self.xfm(x) return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1) except: # using Reorg instead class DWT(nn.Module): def forward(self, x): return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1) class Reorg(nn.Module): def forward(self, x): return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1) def make_divisible(v, divisor): # Function ensures all layers have a channel number that is divisible by 8 # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py return math.ceil(v / divisor) * divisor class Flatten(nn.Module): # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions def forward(self, x): return x.view(x.size(0), -1) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class FeatureConcat(nn.Module): def __init__(self, layers): super(FeatureConcat, self).__init__() self.layers = layers # layer indices self.multiple = len(layers) > 1 # multiple layers flag def forward(self, x, outputs): return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]] class FeatureConcat2(nn.Module): def __init__(self, layers): super(FeatureConcat2, self).__init__() self.layers = layers # layer indices self.multiple = len(layers) > 1 # multiple layers flag def forward(self, x, outputs): return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach()], 1) class FeatureConcat3(nn.Module): def __init__(self, layers): super(FeatureConcat3, self).__init__() self.layers = layers # layer indices self.multiple = len(layers) > 1 # multiple layers flag def forward(self, x, outputs): return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach(), outputs[self.layers[2]].detach()], 1) class FeatureConcat_l(nn.Module): def __init__(self, layers): super(FeatureConcat_l, self).__init__() self.layers = layers # layer indices self.multiple = len(layers) > 1 # multiple layers flag def forward(self, x, outputs): return torch.cat([outputs[i][:,:outputs[i].shape[1]//2,:,:] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]][:,:outputs[self.layers[0]].shape[1]//2,:,:] class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers, weight=False): super(WeightedFeatureFusion, self).__init__() self.layers = layers # layer indices self.weight = weight # apply weights boolean self.n = len(layers) + 1 # number of layers if weight: self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights def forward(self, x, outputs): # Weights if self.weight: w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1) x = x * w[0] # Fusion nx = x.shape[1] # input channels for i in range(self.n - 1): a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add na = a.shape[1] # feature channels # Adjust channels if nx == na: # same shape x = x + a elif nx > na: # slice input x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a else: # slice feature x = x + a[:, :nx] return x class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595 def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'): super(MixConv2d, self).__init__() groups = len(k) if method == 'equal_ch': # equal channels per group i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices ch = [(i == g).sum() for g in range(groups)] else: # 'equal_params': equal parameter count per group b = [out_ch] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch, out_channels=ch[g], kernel_size=k[g], stride=stride, padding=k[g] // 2, # 'same' pad dilation=dilation, bias=bias) for g in range(groups)]) def forward(self, x): return torch.cat([m(x) for m in self.m], 1) # Activation functions below ------------------------------------------------------------------------------------------- class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x * torch.sigmoid(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] sx = torch.sigmoid(x) # sigmoid(ctx) return grad_output * (sx * (1 + x * (1 - sx))) class MishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] sx = torch.sigmoid(x) fx = F.softplus(x).tanh() return grad_output * (fx + x * sx * (1 - fx * fx)) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) class MemoryEfficientMish(nn.Module): def forward(self, x): return MishImplementation.apply(x) class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf def forward(self, x): return x * F.hardtanh(x + 3, 0., 6., True) / 6. class DeformConv2d(nn.Module): def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False): """ Args: modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2). """ super(DeformConv2d, self).__init__() self.kernel_size = kernel_size self.padding = padding self.stride = stride self.zero_padding = nn.ZeroPad2d(padding) self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias) self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride) nn.init.constant_(self.p_conv.weight, 0) self.p_conv.register_backward_hook(self._set_lr) self.modulation = modulation if modulation: self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride) nn.init.constant_(self.m_conv.weight, 0) self.m_conv.register_backward_hook(self._set_lr) @staticmethod def _set_lr(module, grad_input, grad_output): grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input))) grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output))) def forward(self, x): offset = self.p_conv(x) if self.modulation: m = torch.sigmoid(self.m_conv(x)) dtype = offset.data.type() ks = self.kernel_size N = offset.size(1) // 2 if self.padding: x = self.zero_padding(x) # (b, 2N, h, w) p = self._get_p(offset, dtype) # (b, h, w, 2N) p = p.contiguous().permute(0, 2, 3, 1) q_lt = p.detach().floor() q_rb = q_lt + 1 q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long() q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long() q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1) q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1) # clip p p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1) # bilinear kernel (b, h, w, N) g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:])) g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:])) g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:])) g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:])) # (b, c, h, w, N) x_q_lt = self._get_x_q(x, q_lt, N) x_q_rb = self._get_x_q(x, q_rb, N) x_q_lb = self._get_x_q(x, q_lb, N) x_q_rt = self._get_x_q(x, q_rt, N) # (b, c, h, w, N) x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \ g_rb.unsqueeze(dim=1) * x_q_rb + \ g_lb.unsqueeze(dim=1) * x_q_lb + \ g_rt.unsqueeze(dim=1) * x_q_rt # modulation if self.modulation: m = m.contiguous().permute(0, 2, 3, 1) m = m.unsqueeze(dim=1) m = torch.cat([m for _ in range(x_offset.size(1))], dim=1) x_offset *= m x_offset = self._reshape_x_offset(x_offset, ks) out = self.conv(x_offset) return out def _get_p_n(self, N, dtype): p_n_x, p_n_y = torch.meshgrid( torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1), torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1)) # (2N, 1) p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0) p_n = p_n.view(1, 2*N, 1, 1).type(dtype) return p_n def _get_p_0(self, h, w, N, dtype): p_0_x, p_0_y = torch.meshgrid( torch.arange(1, h*self.stride+1, self.stride), torch.arange(1, w*self.stride+1, self.stride)) p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1) p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1) p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype) return p_0 def _get_p(self, offset, dtype): N, h, w = offset.size(1)//2, offset.size(2), offset.size(3) # (1, 2N, 1, 1) p_n = self._get_p_n(N, dtype) # (1, 2N, h, w) p_0 = self._get_p_0(h, w, N, dtype) p = p_0 + p_n + offset return p def _get_x_q(self, x, q, N): b, h, w, _ = q.size() padded_w = x.size(3) c = x.size(1) # (b, c, h*w) x = x.contiguous().view(b, c, -1) # (b, h, w, N) index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y # (b, c, h*w*N) index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1) x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N) return x_offset @staticmethod def _reshape_x_offset(x_offset, ks): b, c, h, w, N = x_offset.size() x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1) x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks) return x_offset class GAP(nn.Module): def __init__(self): super(GAP, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) def forward(self, x): #b, c, _, _ = x.size() return self.avg_pool(x)#.view(b, c) class Silence(nn.Module): def __init__(self): super(Silence, self).__init__() def forward(self, x): return x class ScaleChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ScaleChannel, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return x.expand_as(a) * a class ShiftChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ShiftChannel, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return a.expand_as(x) + x class ShiftChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ShiftChannel2D, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]].view(1,-1,1,1) return a.expand_as(x) + x class ControlChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ControlChannel, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return a.expand_as(x) * x class ControlChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ControlChannel2D, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]].view(1,-1,1,1) return a.expand_as(x) * x class AlternateChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(AlternateChannel, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return torch.cat([a.expand_as(x), x], dim=1) class AlternateChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(AlternateChannel2D, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]].view(1,-1,1,1) return torch.cat([a.expand_as(x), x], dim=1) class SelectChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(SelectChannel, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return a.sigmoid().expand_as(x) * x class SelectChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(SelectChannel2D, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]].view(1,-1,1,1) return a.sigmoid().expand_as(x) * x class ScaleSpatial(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, layers): super(ScaleSpatial, self).__init__() self.layers = layers # layer indices def forward(self, x, outputs): a = outputs[self.layers[0]] return x * a class ImplicitA(nn.Module): def __init__(self, channel): super(ImplicitA, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1)) nn.init.normal_(self.implicit, std=.02) def forward(self): return self.implicit class ImplicitC(nn.Module): def __init__(self, channel): super(ImplicitC, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1)) nn.init.normal_(self.implicit, std=.02) def forward(self): return self.implicit class ImplicitM(nn.Module): def __init__(self, channel): super(ImplicitM, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1)) nn.init.normal_(self.implicit, mean=1., std=.02) def forward(self): return self.implicit class Implicit2DA(nn.Module): def __init__(self, atom, channel): super(Implicit2DA, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1)) nn.init.normal_(self.implicit, std=.02) def forward(self): return self.implicit class Implicit2DC(nn.Module): def __init__(self, atom, channel): super(Implicit2DC, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1)) nn.init.normal_(self.implicit, std=.02) def forward(self): return self.implicit class Implicit2DM(nn.Module): def __init__(self, atom, channel): super(Implicit2DM, self).__init__() self.channel = channel self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1)) nn.init.normal_(self.implicit, mean=1., std=.02) def forward(self): return self.implicit