import argparse import glob import json import os from pathlib import Path import numpy as np import torch import yaml from tqdm import tqdm from utils.google_utils import attempt_load from utils.datasets import create_dataloader from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, box_iou, \ non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, clip_coords, set_logging, increment_path from utils.loss import compute_loss from utils.metrics import ap_per_class from utils.plots import plot_images, output_to_target from utils.torch_utils import select_device, time_synchronized from models.models import * def load_classes(path): # Loads *.names file at 'path' with open(path, 'r') as f: names = f.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def test(data, weights=None, batch_size=16, imgsz=640, conf_thres=0.001, iou_thres=0.6, # for NMS save_json=False, single_cls=False, augment=False, verbose=False, model=None, dataloader=None, save_dir=Path(''), # for saving images save_txt=False, # for auto-labelling save_conf=False, plots=True, log_imgs=0): # number of logged images # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(opt.device, batch_size=batch_size) save_txt = opt.save_txt # save *.txt labels # Directories save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = Darknet(opt.cfg).to(device) # load model try: ckpt = torch.load(weights[0], map_location=device) # load checkpoint ckpt['model'] = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()} model.load_state_dict(ckpt['model'], strict=False) except: load_darknet_weights(model, weights[0]) imgsz = check_img_size(imgsz, s=64) # check img_size # Half half = device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() is_coco = data.endswith('coco.yaml') # is COCO dataset with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Logging log_imgs, wandb = min(log_imgs, 100), None # ceil try: import wandb # Weights & Biases except ImportError: log_imgs = 0 # Dataloader if not training: img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images dataloader = create_dataloader(path, imgsz, batch_size, 64, opt, pad=0.5, rect=True)[0] seen = 0 try: names = model.names if hasattr(model, 'names') else model.module.names except: names = load_classes(opt.names) coco91class = coco80_to_coco91_class() s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width whwh = torch.Tensor([width, height, width, height]).to(device) # Disable gradients with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model(img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: # if model has loss hyperparameters loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS t = time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Append to text file path = Path(paths[si]) if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh x = pred.clone() x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original for *xyxy, conf, cls in x: xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') # W&B logging if plots and len(wandb_images) < log_imgs: box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": {"class_score": conf}, "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] boxes = {"predictions": {"box_data": box_data, "class_labels": names}} wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) # Clip boxes to image bounds clip_coords(pred, (height, width)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = pred[:, :4].clone() # xyxy scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape box = xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({'image_id': image_id, 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5)}) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) * whwh # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn if len(detected) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f'test_batch{batch_i}_labels.jpg' # filename plot_images(img, targets, paths, f, names) # labels f = save_dir / f'test_batch{batch_i}_pred.jpg' plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png') p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # W&B logging if plots and wandb: wandb.log({"Images": wandb_images}) wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]}) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple if not training: print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights anno_json = glob.glob('../coco/annotations/instances_val*.json')[0] # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) except Exception as e: print('ERROR: pycocotools unable to run: %s' % e) # Return results if not training: print('Results saved to %s' % save_dir) model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t if __name__ == '__main__': parser = argparse.ArgumentParser(prog='test.py') parser.add_argument('--weights', nargs='+', type=str, default='yolor_p6.pt', help='model.pt path(s)') parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') parser.add_argument('--img-size', type=int, default=1280, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') parser.add_argument('--task', default='val', help="'val', 'test', 'study'") parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--verbose', action='store_true', help='report mAP by class') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') parser.add_argument('--project', default='runs/test', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--cfg', type=str, default='cfg/yolor_p6.cfg', help='*.cfg path') parser.add_argument('--names', type=str, default='data/coco.names', help='*.cfg path') opt = parser.parse_args() opt.save_json |= opt.data.endswith('coco.yaml') opt.data = check_file(opt.data) # check file print(opt) if opt.task in ['val', 'test']: # run normally test(opt.data, opt.weights, opt.batch_size, opt.img_size, opt.conf_thres, opt.iou_thres, opt.save_json, opt.single_cls, opt.augment, opt.verbose, save_txt=opt.save_txt, save_conf=opt.save_conf, ) elif opt.task == 'study': # run over a range of settings and save/plot for weights in ['yolor_p6.pt', 'yolor_w6.pt']: f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to x = list(range(320, 800, 64)) # x axis y = [] # y axis for i in x: # img-size print('\nRunning %s point %s...' % (f, i)) r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) y.append(r + t) # results and times np.savetxt(f, y, fmt='%10.4g') # save os.system('zip -r study.zip study_*.txt') # utils.general.plot_study_txt(f, x) # plot