[net] batch=64 subdivisions=8 width=1280 height=1280 channels=3 momentum=0.949 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.00261 burn_in=1000 max_batches = 500500 policy=steps steps=400000,450000 scales=.1,.1 mosaic=1 # ============ Backbone ============ # # Stem # P1 # Downsample # 0 [reorg] [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=silu # P2 # Downsample [convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=silu # Residual Block [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear # Transition first # #[convolutional] #batch_normalize=1 #filters=64 #size=1 #stride=1 #pad=1 #activation=silu # Merge [-1, -(3k+3)] [route] layers = -1,-12 # Transition last # 16 (previous+6+3k) [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu # P3 # Downsample [convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu # Residual Block [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear # Transition first # #[convolutional] #batch_normalize=1 #filters=128 #size=1 #stride=1 #pad=1 #activation=silu # Merge [-1, -(3k+3)] [route] layers = -1,-24 # Transition last # 43 (previous+6+3k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # P4 # Downsample [convolutional] batch_normalize=1 filters=384 size=3 stride=2 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu # Residual Block [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=192 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear # Transition first # #[convolutional] #batch_normalize=1 #filters=192 #size=1 #stride=1 #pad=1 #activation=silu # Merge [-1, -(3k+3)] [route] layers = -1,-24 # Transition last # 70 (previous+6+3k) [convolutional] batch_normalize=1 filters=384 size=1 stride=1 pad=1 activation=silu # P5 # Downsample [convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # Residual Block [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear # Transition first # #[convolutional] #batch_normalize=1 #filters=256 #size=1 #stride=1 #pad=1 #activation=silu # Merge [-1, -(3k+3)] [route] layers = -1,-12 # Transition last # 85 (previous+6+3k) [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=silu # P6 # Downsample [convolutional] batch_normalize=1 filters=640 size=3 stride=2 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu # Residual Block [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=silu [shortcut] from=-3 activation=linear # Transition first # #[convolutional] #batch_normalize=1 #filters=320 #size=1 #stride=1 #pad=1 #activation=silu # Merge [-1, -(3k+3)] [route] layers = -1,-12 # Transition last # 100 (previous+6+3k) [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=silu # ============ End of Backbone ============ # # ============ Neck ============ # # CSPSPP [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=silu [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu ### SPP ### [maxpool] stride=1 size=5 [route] layers=-2 [maxpool] stride=1 size=9 [route] layers=-4 [maxpool] stride=1 size=13 [route] layers=-1,-3,-5,-6 ### End SPP ### [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=silu [route] layers = -1, -13 # 115 (previous+6+5+2k) [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu # End of CSPSPP # FPN-5 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [upsample] stride=2 [route] layers = 85 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 131 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # FPN-4 [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [upsample] stride=2 [route] layers = 70 [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 147 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu # FPN-3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [upsample] stride=2 [route] layers = 43 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=silu [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=silu [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=silu # Merge [-1, -(2k+2)] [route] layers = -1, -8 # Transition last # 163 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=silu # PAN-4 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=192 activation=silu [route] layers = -1, 147 [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=192 activation=silu [route] layers = -1,-8 # Transition last # 176 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=192 size=1 stride=1 pad=1 activation=silu # PAN-5 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=256 activation=silu [route] layers = -1, 131 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [route] layers = -1,-8 # Transition last # 189 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=silu # PAN-6 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=320 activation=silu [route] layers = -1, 115 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu # Split [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=silu [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=silu [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=silu [route] layers = -1,-8 # Transition last # 202 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=silu # ============ End of Neck ============ # # 203 [implicit_add] filters=256 # 204 [implicit_add] filters=384 # 205 [implicit_add] filters=512 # 206 [implicit_add] filters=640 # 207 [implicit_mul] filters=255 # 208 [implicit_mul] filters=255 # 209 [implicit_mul] filters=255 # 210 [implicit_mul] filters=255 # ============ Head ============ # # YOLO-3 [route] layers = 163 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=silu [shift_channels] from=203 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [control_channels] from=207 [yolo] mask = 0,1,2 anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 classes=80 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-4 [route] layers = 176 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=384 activation=silu [shift_channels] from=204 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [control_channels] from=208 [yolo] mask = 3,4,5 anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 classes=80 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-5 [route] layers = 189 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=silu [shift_channels] from=205 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [control_channels] from=209 [yolo] mask = 6,7,8 anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 classes=80 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # YOLO-6 [route] layers = 202 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=silu [shift_channels] from=206 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [control_channels] from=210 [yolo] mask = 9,10,11 anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 classes=80 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 scale_x_y = 1.05 iou_thresh=0.213 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 # ============ End of Head ============ #