import gradio as gr from transformers import pipeline # Load the summarization model summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Use the grammar correction model via pipeline grammar_correction_pipe = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis") # Function for grammar correction def correct_grammar(user_input): if user_input.strip(): corrected_text = grammar_correction_pipe(user_input)[0]['generated_text'] return corrected_text else: return "Please enter some text for grammar correction." # Function for text summarization def summarize_text(user_input): if user_input.strip(): summary = summarizer(user_input, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] return summary else: return "Please enter some text to summarize." # Function to combine grammar correction and summarization def correct_and_summarize(user_input): corrected_text = correct_grammar(user_input) # First correct the grammar summary = summarize_text(corrected_text) # Then summarize the corrected text return summary # Gradio UI setup with gr.Blocks() as demo: gr.Markdown("## Text Summarization and Grammar Correction Assistant") # Dropdown to select task task = gr.Dropdown(choices=["Summarize Text", "Correct Grammar"], label="Choose a task") # Input component for text user_input = gr.Textbox(label="Enter your text here:") # Output box for displaying the result output = gr.Textbox(label="Output", interactive=False) # Submit button submit_btn = gr.Button("Submit") # Function to process the input based on selected task def process_input(task, user_input): if task == "Summarize Text": return correct_and_summarize(user_input) # Correct grammar, then summarize elif task == "Correct Grammar": return correct_grammar(user_input) # Only correct grammar # Link the submit button to process the input submit_btn.click(process_input, inputs=[task, user_input], outputs=output) # Launch the Gradio interface demo.launch()