Spaces:
Sleeping
Sleeping
karthickg12
commited on
Commit
•
0d3caec
1
Parent(s):
fc07358
Update app.py
Browse files
app.py
CHANGED
@@ -17,16 +17,57 @@
|
|
17 |
# st.write(summarizer(t1))
|
18 |
|
19 |
#from transformers import AutoTokenizer, AutoModel
|
20 |
-
import streamlit as st
|
21 |
|
22 |
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
23 |
|
24 |
-
#model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
25 |
-
# Use a pipeline as a high-level helper
|
26 |
-
from transformers import pipeline
|
27 |
|
28 |
-
#pipe = pipeline("feature-extraction")
|
29 |
|
30 |
-
t=st.text_input("Enter the Text")
|
31 |
-
pipe = pipeline("summarization")
|
32 |
-
st.write(pipe(t))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# st.write(summarizer(t1))
|
18 |
|
19 |
#from transformers import AutoTokenizer, AutoModel
|
20 |
+
# import streamlit as st
|
21 |
|
22 |
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
23 |
|
24 |
+
# #model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
25 |
+
# # Use a pipeline as a high-level helper
|
26 |
+
# from transformers import pipeline
|
27 |
|
28 |
+
# #pipe = pipeline("feature-extraction")
|
29 |
|
30 |
+
# t=st.text_input("Enter the Text")
|
31 |
+
# pipe = pipeline("summarization")
|
32 |
+
# st.write(pipe(t))
|
33 |
+
|
34 |
+
|
35 |
+
import pandas as pd
|
36 |
+
import numpy as np
|
37 |
+
from ydata_synthetic.synthesizers.regular import RegularSynthesizer
|
38 |
+
from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
|
39 |
+
import streamlit as st
|
40 |
+
from os import getcwd
|
41 |
+
text_file=st.file_uploader("Upload the Data File")
|
42 |
+
st.write("-------------------------")
|
43 |
+
|
44 |
+
if text_file is not None:
|
45 |
+
df=pd.read_csv(text_file)
|
46 |
+
dd_list=df.columns
|
47 |
+
cat_cols=st.multiselect("Select the Categorical Columns",dd_list)
|
48 |
+
num_cols=st.multiselect("Select the Numerical Columns",dd_list)
|
49 |
+
Output_file=st.text_input('Enter Output File Name')
|
50 |
+
s=st.number_input('Enter the Sample Size',1000)
|
51 |
+
OP=Output_file + '.csv'
|
52 |
+
sub=st.button('Submit')
|
53 |
+
if sub:
|
54 |
+
batch_size = 50
|
55 |
+
epochs = 3
|
56 |
+
learning_rate = 2e-4
|
57 |
+
beta_1 = 0.5
|
58 |
+
beta_2 = 0.9
|
59 |
+
|
60 |
+
ctgan_args = ModelParameters(batch_size=batch_size,
|
61 |
+
lr=learning_rate,
|
62 |
+
betas=(beta_1, beta_2))
|
63 |
+
|
64 |
+
train_args = TrainParameters(epochs=epochs)
|
65 |
+
synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)
|
66 |
+
synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)
|
67 |
+
df_syn = synth.sample(s)
|
68 |
+
df_syn.to_csv(OP)
|
69 |
+
c=getcwd()
|
70 |
+
c=c + '/' + OP
|
71 |
+
with open(c,"rb") as file:
|
72 |
+
st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
|
73 |
+
st.success("Thanks for using the app !!!")
|