Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
# Load models | |
models = { | |
"Logistic Regression": joblib.load("models/best_model.joblib"), | |
"Random Forest": joblib.load("models/random_forest_model.joblib"), | |
"KNN": joblib.load("models/trained_knn_model.joblib"), | |
} | |
# Load vectorizer | |
vectorizer = joblib.load("models/vectorizer.joblib") | |
# Define prediction function | |
def predict_sentiment(review, model_name): | |
# Transform the review text using the vectorizer | |
processed_review = vectorizer.transform([review]) | |
# Select the model | |
model = models[model_name] | |
# Make predictions | |
predicted_class = model.predict(processed_review)[0] | |
probabilities = model.predict_proba(processed_review)[0] | |
# Define sentiment labels | |
sentiment_labels = ["Negative Comment", "Positive Comment"] | |
predicted_label = sentiment_labels[predicted_class] | |
# Return probabilities as percentages | |
positive_percentage = probabilities[1] * 100 | |
negative_percentage = probabilities[0] * 100 | |
return predicted_label, positive_percentage, negative_percentage | |
# Build Gradio interface | |
with gr.Blocks() as interface: | |
gr.Markdown("<h1>Text Classification Models</h1>") | |
gr.Markdown("Choose a model and provide a review to see the sentiment analysis results with probabilities displayed as scales.") | |
with gr.Row(): | |
with gr.Column(): | |
review_input = gr.Textbox(label="Review Comment", placeholder="Type your comment here...") | |
model_selector = gr.Dropdown( | |
choices=list(models.keys()), label="Select Model", value="Logistic Regression" | |
) | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
sentiment_output = gr.Textbox(label="Predicted Sentiment Class", interactive=False) | |
positive_progress = gr.Slider(label="Positive Comment Percentage", minimum=0, maximum=100, interactive=False) | |
negative_progress = gr.Slider(label="Negative Comment Percentage", minimum=0, maximum=100, interactive=False) | |
submit_button.click( | |
predict_sentiment, | |
inputs=[review_input, model_selector], | |
outputs=[sentiment_output, positive_progress, negative_progress], | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |