Spaces:
Runtime error
Runtime error
import gradio as gr | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer, pipeline | |
# Load your dataset function | |
dataset = load_dataset("karthikmns/eval_testing_mns") | |
# Load a pre-trained model and tokenizer | |
model_name = "distilbert-base-uncased-distilled-squad" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
# Tokenize the dataset | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, padding="max_length") | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Set up training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
) | |
# Create Trainer instance | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
) | |
# Fine-tune the model | |
trainer.train() | |
# Save the model | |
model.save_pretrained("./fine_tuned_model") | |
# Create a question-answering pipeline | |
qa_pipeline = pipeline("question-answering", model="./fine_tuned_model") | |
# Define the Gradio interface function | |
def answer_question(question): | |
result = qa_pipeline(question=question, context=dataset["text"]) | |
return result['answer'] | |
# Create and launch the Gradio interface | |
iface = gr.Interface( | |
fn=answer_question, | |
inputs="text", | |
outputs="text", | |
title="Textbook Q&A", | |
description="Ask a question about your textbook!" | |
) | |
iface.launch() |