Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer, pipeline
|
4 |
+
|
5 |
+
# Load your dataset
|
6 |
+
dataset = load_dataset("your-username/your-dataset-name")
|
7 |
+
|
8 |
+
# Load a pre-trained model and tokenizer
|
9 |
+
model_name = "distilbert-base-uncased-distilled-squad"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Tokenize the dataset
|
14 |
+
def tokenize_function(examples):
|
15 |
+
return tokenizer(examples["question"], examples["text"], truncation=True, padding="max_length")
|
16 |
+
|
17 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
18 |
+
|
19 |
+
# Set up training arguments
|
20 |
+
training_args = TrainingArguments(
|
21 |
+
output_dir="./results",
|
22 |
+
evaluation_strategy="epoch",
|
23 |
+
learning_rate=2e-5,
|
24 |
+
per_device_train_batch_size=16,
|
25 |
+
per_device_eval_batch_size=16,
|
26 |
+
num_train_epochs=3,
|
27 |
+
weight_decay=0.01,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Create Trainer instance
|
31 |
+
trainer = Trainer(
|
32 |
+
model=model,
|
33 |
+
args=training_args,
|
34 |
+
train_dataset=tokenized_datasets["train"],
|
35 |
+
eval_dataset=tokenized_datasets["validation"],
|
36 |
+
)
|
37 |
+
|
38 |
+
# Fine-tune the model
|
39 |
+
trainer.train()
|
40 |
+
|
41 |
+
# Save the model
|
42 |
+
model.save_pretrained("./fine_tuned_model")
|
43 |
+
|
44 |
+
# Create a question-answering pipeline
|
45 |
+
qa_pipeline = pipeline("question-answering", model="./fine_tuned_model")
|
46 |
+
|
47 |
+
# Define the Gradio interface function
|
48 |
+
def answer_question(context, question):
|
49 |
+
result = qa_pipeline(question=question, context=context)
|
50 |
+
return result['answer']
|
51 |
+
|
52 |
+
# Create and launch the Gradio interface
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=answer_question,
|
55 |
+
inputs=["text", "text"],
|
56 |
+
outputs="text",
|
57 |
+
title="Textbook Q&A",
|
58 |
+
description="Ask a question about your textbook!"
|
59 |
+
)
|
60 |
+
|
61 |
+
iface.launch()
|