Spaces:
Sleeping
Sleeping
File size: 13,385 Bytes
aa133c0 7e12869 aa133c0 7e12869 aa133c0 7e12869 aa133c0 7e12869 aa133c0 7e12869 aa133c0 7e12869 aa133c0 40d0993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#############################Imports##############################################
## General imports
import os
import sys
import zipfile
import logging
import IPython
from IPython.display import display
from pyvis.network import Network
import dotenv
from google.cloud import storage
dotenv.load_dotenv()
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "tidy-resolver-411707-0f032726c297.json"
def download_blob(bucket_name, source_blob_name, destination_file_name):
"""Downloads a blob from the bucket."""
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(source_blob_name)
blob.download_to_filename(destination_file_name)
print(f"Downloaded storage object {source_blob_name} from bucket {bucket_name} to local file {destination_file_name}.")
# List of file names to download
file_names = [
"default__vector_store.json",
"docstore.json",
"graph_store.json",
"image__vector_store.json",
"index_store.json"
]
# Bucket name
bucket_name = "title_tailors_bucket"
# Create the destination directory if it doesn't exist
os.makedirs("storage/bm25", exist_ok=True)
# Loop through the file names and download each one
for file_name in file_names:
source_blob_name = f"storage/bm25/{file_name}"
destination_file_name = f"storage/bm25/{file_name}"
download_blob(bucket_name, source_blob_name, destination_file_name)
# List of file names to download
file_names = [
"default__vector_store.json",
"docstore.json",
"graph_store.json",
"image__vector_store.json",
"index_store.json"
]
# Bucket name
bucket_name = "title_tailors_bucket"
# Create the destination directory if it doesn't exist
os.makedirs("storage/kg", exist_ok=True)
# Loop through the file names and download each one
for file_name in file_names:
source_blob_name = f"storage/kg/{file_name}"
destination_file_name = f"storage/kg/{file_name}"
download_blob(bucket_name, source_blob_name, destination_file_name)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MISTRAL_API = os.environ.get("MISTRAL_API", None)
print(f"MISTRAL_API: {MISTRAL_API}")
## logger
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
# Knowledge graph imports
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
KnowledgeGraphIndex,
load_index_from_storage,
Settings,
)
from llama_index.core.graph_stores import SimpleGraphStore
from llama_index.embeddings.mistralai import MistralAIEmbedding
from llama_index.llms.mistralai import MistralAI
## BM25 imports
from llama_index.core import (
VectorStoreIndex,
QueryBundle,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import (
BaseRetriever,
VectorIndexRetriever,
QueryFusionRetriever,
)
from llama_index.core.schema import NodeWithScore
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.response.notebook_utils import (
display_response,
display_source_node,
)
# Chat engine
from llama_index.core import PromptTemplate
from llama_index.core import chat_engine
from llama_index.core import memory
import nest_asyncio
nest_asyncio.apply()
################### Loading the LLM via Mistral API
llm = MistralAI(api_key=MISTRAL_API, model="open-mixtral-8x7b")
### Loading the Embedding via Mistral API
embed_model = MistralAIEmbedding(api_key=MISTRAL_API, model = "mistral-embed")
################### Knowledge Graph Index#################
########### While loading from persist only ###############
Settings.llm = llm
Settings.embed_model = embed_model
kg_storage_context = StorageContext.from_defaults(persist_dir="storage/kg")
kg_index = load_index_from_storage(kg_storage_context)
kg_retriever = kg_index.as_retriever(include_text=True,
response_mode ="tree_summarize",
embedding_mode="hybrid",
similarity_top_k=10)
################### BM25 Index #################
####################### While loading Indices from persist #######################
# Settings.llm = llm
# Settings.embed_model = embed_model
storage_context_v = StorageContext.from_defaults(persist_dir="storage/bm25")
index_v = load_index_from_storage(storage_context_v)
vector_retriever = index_v.as_retriever(similarity_top_k=10)
bm25_retriever = BM25Retriever.from_defaults(index=index_v, similarity_top_k=10, verbose=False) ## loading after persist
###################### Reranker from HuggingFace 🤗
reranker = SentenceTransformerRerank(top_n=5, model="mixedbread-ai/mxbai-rerank-base-v1", keep_retrieval_score=False)
################ Query Fusion Retriever ##################
QUERY_GEN_PROMPT = (
"You are a helpful assistant that generates multiple search queries on astronomy based on a "
"single input query. Generate {num_queries} search queries for astronomy, one on each line, "
"related to the following input query:\n"
"Query: {query}\n"
"Queries:\n"
)
#### Hybrid (Dense + BM25 + KG) Retriever ####
hybrid_retriever = QueryFusionRetriever(
retrievers = [vector_retriever, bm25_retriever, kg_retriever],
retriever_weights = [0.25, 0.25, 0.50],
similarity_top_k=5,
llm=llm,
num_queries=3, # set this to 1 to disable query generation
mode="reciprocal_rerank",
use_async=True,
verbose=False,
query_gen_prompt=QUERY_GEN_PROMPT,
)
#### KG Retriever ####
kg_retriever = QueryFusionRetriever(
retrievers = [kg_retriever],
# retriever_weights = [0.25, 0.25, 0.50],
similarity_top_k=5,
llm=llm,
num_queries=3, # set this to 1 to disable query generation
mode="reciprocal_rerank",
use_async=True,
verbose=False,
query_gen_prompt=QUERY_GEN_PROMPT,
)
#### Hybrid BM25 (Dense + BM25) Retriever ####
hybrid_bm25_retriever = QueryFusionRetriever(
retrievers = [vector_retriever, bm25_retriever],
# retriever_weights = [0.25, 0.25, 0.50],
similarity_top_k=5,
llm=llm,
num_queries=3, # set this to 1 to disable query generation
mode="reciprocal_rerank",
use_async=True,
verbose=False,
query_gen_prompt=QUERY_GEN_PROMPT,
)
################# Hybrid Chat Engine ###################
system_prompt_template = """You are a helpful AI assistant for reaearcher or enthusiast in the domain of astronomy.
Please check if the following pieces of context has any mention of the keywords provided in the Question. If not then don't know the answer, just say that you don't know.Stop there. Please donot try to make up an answer."""
from llama_index.core import chat_engine
from llama_index.core import memory
######## Hybrid (Dense + BM25 + KG) chat engine #########
hybrid_memory = memory.ChatMemoryBuffer.from_defaults(token_limit=30000)
Hybrid_chat_engine = chat_engine.CondensePlusContextChatEngine(retriever=hybrid_retriever,
llm=llm,
memory=hybrid_memory,
# context_prompt=,
# condense_prompt=,
system_prompt=system_prompt_template,
node_postprocessors=[reranker],
verbose=False,
)
######## Hybrid (Dense + BM25 + KG) chat engine #########
kg_memory = memory.ChatMemoryBuffer.from_defaults(token_limit=30000)
kg_chat_engine = chat_engine.CondensePlusContextChatEngine(retriever=kg_retriever,
llm=llm,
memory=kg_memory,
# context_prompt=,
# condense_prompt=,
system_prompt=system_prompt_template,
node_postprocessors=[reranker],
verbose=False,
)
######## Hybrid (Dense + BM25 + KG) chat engine #########
hybrid_bm25_memory = memory.ChatMemoryBuffer.from_defaults(token_limit=30000)
hybrid_bm25_chat_engine = chat_engine.CondensePlusContextChatEngine(retriever=hybrid_bm25_retriever,
llm=llm,
memory=hybrid_bm25_memory,
# context_prompt=,
# condense_prompt=,
system_prompt=system_prompt_template,
node_postprocessors=[reranker],
verbose=False,
)
################## Post Processors ###################
def get_documents(response):
"""Get the reference documents for a chat engine response.
Args:
response (ChatResponse): The chat engine response object.
Returns:
str: A formatted string containing the reference document paths and page numbers.
"""
plist = []
reference_docs={}
for idx, content in enumerate(response.sources[0].content.split("\n\n")):
if "page_label" in content:
plist.append(content)
for i, entry in enumerate(plist, start=1):
lines = entry.split('\n')
page_label = int(lines[0].split(': ')[1])
file_path = lines[1].split(': ')[1]
reference_docs[f"doc{i}"] = {
"document_path": file_path,
"page": page_label
}
reference = f"""
\n Reference Docs (document paths, page number):
...{reference_docs['doc1']['document_path']}, page {reference_docs['doc1']['page']}
...{reference_docs['doc2']['document_path']}, page {reference_docs['doc2']['page']}
...{reference_docs['doc3']['document_path']}, page {reference_docs['doc3']['page']}
...{reference_docs['doc4']['document_path']}, page {reference_docs['doc4']['page']}
...{reference_docs['doc5']['document_path']}, page {reference_docs['doc5']['page']}
"""
return reference
##################### Query Function #####################
def get_query(query=""):
"""Get a response from the Hybrid chat engine and format the result with reference documents.
Args:
query (str): The query to send to the chat engine.
Returns:
str: The chat engine response with the reference documents appended.
"""
response_1 = Hybrid_chat_engine.chat(query)
response_2 = kg_chat_engine.chat(query)
response_3 = hybrid_bm25_chat_engine.chat(query)
reference_1 = get_documents(response_1)
reference_2 = get_documents(response_2)
reference_3 = get_documents(response_3)
reply_1 = response_1.response
reply_2 = response_2.response
reply_3 = response_3.response
result_hybrid = reply_1 + reference_1
result_kg = reply_2 + reference_2
result_hybrid_bm25 = reply_3 + reference_3
return result_hybrid, result_kg, result_hybrid_bm25
# print(get_query("what is difference between class I and class II ?"))
# Based on the provided documents, Class I and Class II are two distinct evolutionary stages of young stellar objects (YSOs) in the process of forming stars. The documents describe the evolutionary stages of YSOs as follows:
# * Class 0: The formation of a YSO in the central region of a protostellar core with an envelope mass that is much in excess of the YSO mass.
# * Class I: The collapse of the envelope onto the central object, with the transition between Class 0 and Class I being the point in time at which the envelope mass and the mass of the protostar are nearly equal.
# * Class II: The emergence of a disk around the central star.
# * Class III: The dissipation of the disk by various processes such as the formation of planets, photo-evaporation, and tidal stripping.
# The documents also mention that an intermediate class between Class 0 and Class I has been proposed, but it is considered to be close to Class I in terms of the evolutionary status of the YSOs.
# Regarding the difference between Class I and Class II, the documents do not provide a detailed explanation, but it is suggested that the main difference lies in the presence of a disk around the central star in Class II, which is not present in Class I. The emergence of a disk around the central star is a sign of a more evolved stage in the star formation process. The documents also mention that the exact duration of each evolutionary stage for YSOs is relatively uncertain and depends on the number of objects found in each class, which may be affected by misclassifications due to YSOs being seen edge-on.
# Reference Docs (document paths, page number):
# .../content/documents/2405.00095v1.pdf, page 8
# .../content/documents/2405.00095v1.pdf, page 3
# .../content/documents/2405.00095v1.pdf, page 9
# .../content/documents/2405.00095v1.pdf, page 2
# .../content/documents/2405.00095v1.pdf, page 2
|