Spaces:
Running
Running
karubiniumu
commited on
Commit
•
3ac45a5
1
Parent(s):
71dbfab
blog only
Browse files- .gitattributes +1 -0
- .gitignore +0 -0
- app.py +93 -0
- document_store.json +3 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
document_store.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
4 |
+
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever, InMemoryEmbeddingRetriever
|
5 |
+
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
6 |
+
from haystack.components.joiners import DocumentJoiner
|
7 |
+
from haystack.components.rankers import TransformersSimilarityRanker
|
8 |
+
from haystack import Pipeline,component,Document
|
9 |
+
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
|
10 |
+
from haystack.components.builders import PromptBuilder
|
11 |
+
|
12 |
+
@component
|
13 |
+
class AnswerBuilder :
|
14 |
+
@component.output_types(reply=str,documents=list[Document])
|
15 |
+
def run(self,replies:list[str],documents:list[Document]):
|
16 |
+
reply = replies[0]
|
17 |
+
return {"reply":reply,'documents':documents}
|
18 |
+
|
19 |
+
document_store = InMemoryDocumentStore.load_from_disk(path='./document_store.json')
|
20 |
+
print('document_store loaded' ,document_store.count_documents())
|
21 |
+
|
22 |
+
class Niwa_rag :
|
23 |
+
def __init__(self):
|
24 |
+
self.createPipe()
|
25 |
+
def createPipe(self):
|
26 |
+
template = """
|
27 |
+
以下の情報に基づいて質問に答えて下さい。
|
28 |
+
|
29 |
+
Context:
|
30 |
+
{% for document in documents %}
|
31 |
+
{{ document.content }}
|
32 |
+
{% endfor %}
|
33 |
+
|
34 |
+
質問: {{question}}
|
35 |
+
回答:
|
36 |
+
"""
|
37 |
+
text_embedder = SentenceTransformersTextEmbedder()
|
38 |
+
embedding_retriever = InMemoryEmbeddingRetriever(document_store)
|
39 |
+
bm25_retriever = InMemoryBM25Retriever(document_store)
|
40 |
+
document_joiner = DocumentJoiner()
|
41 |
+
ranker = TransformersSimilarityRanker(top_k=6)
|
42 |
+
prompt_builder = PromptBuilder(template=template)
|
43 |
+
gemini = GoogleAIGeminiGenerator(model="models/gemini-1.0-pro")
|
44 |
+
answer_builder = AnswerBuilder()
|
45 |
+
|
46 |
+
pipe = Pipeline()
|
47 |
+
pipe.add_component("text_embedder", text_embedder)
|
48 |
+
pipe.add_component("embedding_retriever", embedding_retriever)
|
49 |
+
pipe.add_component("bm25_retriever", bm25_retriever)
|
50 |
+
pipe.add_component("document_joiner", document_joiner)
|
51 |
+
pipe.add_component("ranker", ranker)
|
52 |
+
pipe.add_component("prompt_builder", prompt_builder)
|
53 |
+
pipe.add_component("llm", gemini)
|
54 |
+
pipe.add_component("answer_builder", answer_builder)
|
55 |
+
|
56 |
+
pipe.connect("text_embedder", "embedding_retriever")
|
57 |
+
pipe.connect("bm25_retriever", "document_joiner")
|
58 |
+
pipe.connect("embedding_retriever", "document_joiner")
|
59 |
+
pipe.connect("document_joiner", "ranker")
|
60 |
+
pipe.connect("ranker.documents", "prompt_builder.documents")
|
61 |
+
pipe.connect("prompt_builder.prompt", "llm")
|
62 |
+
pipe.connect("llm.replies", "answer_builder.replies")
|
63 |
+
pipe.connect("ranker.documents", "answer_builder.documents")
|
64 |
+
self.pipe = pipe
|
65 |
+
def run(self,q):
|
66 |
+
if not q :
|
67 |
+
return ['','']
|
68 |
+
result = self.pipe.run(
|
69 |
+
{"text_embedder": {"text": q}, "bm25_retriever": {"query": q}, "ranker": {"query": q},'prompt_builder':{'question':q}}
|
70 |
+
)
|
71 |
+
reply = result['answer_builder']['reply']
|
72 |
+
html = '<div>参考記事</div><div style="margin-left:30px">'
|
73 |
+
for doc in result['answer_builder']['documents'] :
|
74 |
+
title = doc.meta['title']
|
75 |
+
link = doc.meta['link']
|
76 |
+
row = f'<div><a href="{link}" target="_blank">{title}</a></div>'
|
77 |
+
html += row
|
78 |
+
html += '</div>'
|
79 |
+
return [reply,html]
|
80 |
+
|
81 |
+
rag = Niwa_rag()
|
82 |
+
|
83 |
+
with gr.Blocks() as app:
|
84 |
+
inputs=gr.Textbox(label='質問')
|
85 |
+
submit = gr.Button("送信",variant="primary")
|
86 |
+
reply =gr.Textbox(label='回答')
|
87 |
+
sources =gr.HTML(label='参考記事')
|
88 |
+
submit.click(lambda: gr.update(interactive=False),inputs=None, outputs=submit) \
|
89 |
+
.then(fn=rag.run, inputs=inputs, outputs=[reply,sources] ) \
|
90 |
+
.then(fn=lambda: gr.update(interactive=True),inputs=None, outputs=submit)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
app.launch(share=True)
|
document_store.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4c44c65ed78f60d71791e1d1dc28451984561427236f4c231c013e9590d37cd
|
3 |
+
size 41714621
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
gradio
|
4 |
+
haystack-ai
|
5 |
+
google-ai-haystack
|
6 |
+
accelerate
|
7 |
+
sentence-transformers
|