Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
# Initialize the client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Define the function to respond to user inputs | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response.choices[0].message['content'] | |
# Define the function to generate posts | |
def generate_post(prompt, max_tokens, temperature, top_p): | |
response = client.chat_completion( | |
[{"role": "user", "content": prompt}], | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response.choices[0].message['content'] | |
# Define the function to moderate posts | |
def moderate_post(post): | |
# Implement your post moderation logic here | |
if "inappropriate" in post: | |
return "Post does not adhere to community guidelines." | |
return "Post adheres to community guidelines." | |
# Define the function to generate images | |
def generate_image(prompt): | |
# Replace with actual model or API endpoint for image generation | |
response = client.text_to_image(prompt) | |
image = Image.open(BytesIO(response)) | |
return image | |
# Define the function to moderate images | |
def moderate_image(image): | |
# Convert the PIL image to a format that can be sent for moderation | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
# Replace with your actual image moderation API endpoint | |
moderation_api_url = "https://example.com/moderation/api" | |
# Send the image to the moderation API | |
response = requests.post(moderation_api_url, files={"file": image_bytes}) | |
result = response.json() | |
# Check the result from the moderation API | |
if result.get("moderation_status") == "approved": | |
return "Image adheres to community guidelines." | |
else: | |
return "Image does not adhere to community guidelines." | |
# Create the Gradio interface | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# AI-driven Content Generation and Moderation Bot") | |
with gr.Tabs(): | |
with gr.TabItem("Chat"): | |
with gr.Column(): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot meant to assist users in managing social media posts ensuring they meet community guidelines", label="System message", visible=False), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False), | |
], | |
) | |
advanced_button = gr.Button("Show Advanced Settings") | |
advanced_settings = gr.Column(visible=False) | |
with advanced_settings: | |
chat_interface.additional_inputs[0].visible = True | |
chat_interface.additional_inputs[1].visible = True | |
chat_interface.additional_inputs[2].visible = True | |
chat_interface.additional_inputs[3].visible = True | |
def toggle_advanced_settings(): | |
advanced_settings.visible = not advanced_settings.visible | |
advanced_button.click(toggle_advanced_settings, [], advanced_settings) | |
with gr.TabItem("Generate Post"): | |
post_prompt = gr.Textbox(label="Post Prompt") | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
generate_button = gr.Button("Generate Post") | |
generated_post = gr.Textbox(label="Generated Post") | |
generate_button.click(generate_post, [post_prompt, max_tokens, temperature, top_p], generated_post) | |
with gr.TabItem("Moderate Post"): | |
post_content = gr.Textbox(label="Post Content") | |
moderate_button = gr.Button("Moderate Post") | |
moderation_result = gr.Textbox(label="Moderation Result") | |
moderate_button.click(moderate_post, post_content, moderation_result) | |
with gr.TabItem("Generate Image"): | |
image_prompt = gr.Textbox(label="Image Prompt") | |
generate_image_button = gr.Button("Generate Image") | |
generated_image = gr.Image(label="Generated Image") | |
generate_image_button.click(generate_image, image_prompt, generated_image) | |
with gr.TabItem("Moderate Image"): | |
uploaded_image = gr.Image(label="Upload Image") | |
moderate_image_button = gr.Button("Moderate Image") | |
image_moderation_result = gr.Textbox(label="Image Moderation Result") | |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result) | |
if __name__ == "__main__": | |
demo.launch() |