Spaces:
Sleeping
Sleeping
import os | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
from transformers import AutoProcessor, FocalNetForImageClassification | |
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import InferenceClient | |
import requests | |
from io import BytesIO | |
# Paths and model setup | |
image_folder = "path_to_your_image_folder" # Specify the path to your image folder | |
model_path = "MichalMlodawski/nsfw-image-detection-large" | |
# List of jpg files in the folder | |
jpg_files = [file for file in os.listdir(image_folder) if file.lower().endswith(".jpg")] | |
if not jpg_files: | |
print("🚫 No jpg files found in folder:", image_folder) | |
exit() | |
# Load the model and feature extractor | |
feature_extractor = AutoProcessor.from_pretrained(model_path) | |
model = FocalNetForImageClassification.from_pretrained(model_path) | |
model.eval() | |
# Image transformations | |
transform = transforms.Compose([ | |
transforms.Resize((512, 512)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
# Mapping from model labels to NSFW categories | |
label_to_category = { | |
"LABEL_0": "Safe", | |
"LABEL_1": "Questionable", | |
"LABEL_2": "Unsafe" | |
} | |
# Device configuration | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the diffusion pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Initialize the InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Inference function for generating images | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return image | |
# Respond function for the chatbot | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response.choices[0].message['content'] | |
# Function to generate posts | |
def generate_post(prompt, max_tokens, temperature, top_p): | |
response = client.chat_completion( | |
[{"role": "user", "content": prompt}], | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response.choices[0].message['content'] | |
# Function to moderate posts | |
def moderate_post(post): | |
# Implement your post moderation logic here | |
if "inappropriate" in post: | |
return "Post does not adhere to community guidelines." | |
return "Post adheres to community guidelines." | |
# Function to generate images using the diffusion pipeline | |
def generate_image(prompt): | |
generator = torch.manual_seed(random.randint(0, MAX_SEED)) | |
image = pipe(prompt=prompt, generator=generator).images[0] | |
return image | |
# Function to moderate images | |
def moderate_image(image): | |
# Convert the PIL image to a format that can be sent for moderation | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
# Replace with your actual image moderation API endpoint | |
moderation_api_url = "https://example.com/moderation/api" | |
# Send the image to the moderation API | |
response = requests.post(moderation_api_url, files={"file": image_bytes}) | |
result = response.json() | |
# Check the result from the moderation API | |
if result.get("moderation_status") == "approved": | |
return "Image adheres to community guidelines." | |
else: | |
return "Image does not adhere to community guidelines." | |
# Create the Gradio interface | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# AI-driven Content Generation and Moderation Bot") | |
gr.Markdown(f"Currently running on {power_device}.") | |
with gr.Tabs(): | |
with gr.TabItem("Chat"): | |
with gr.Column(): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot meant to assist users in managing social media posts ensuring they meet community guidelines", label="System message", visible=False), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False), | |
], | |
) | |
advanced_button = gr.Button("Show Advanced Settings") | |
advanced_settings = gr.Column(visible=False) | |
with advanced_settings: | |
chat_interface.additional_inputs[0].visible = True | |
chat_interface.additional_inputs[1].visible = True | |
chat_interface.additional_inputs[2].visible = True | |
chat_interface.additional_inputs[3].visible = True | |
def toggle_advanced_settings(): | |
advanced_settings.visible = not advanced_settings.visible | |
advanced_button.click(toggle_advanced_settings, [], advanced_settings) | |
with gr.TabItem("Generate Post"): | |
post_prompt = gr.Textbox(label="Post Prompt") | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
generate_button = gr.Button("Generate Post") | |
generated_post = gr.Textbox(label="Generated Post") | |
generate_button.click(generate_post, [post_prompt, max_tokens, temperature, top_p], generated_post) | |
with gr.TabItem("Moderate Post"): | |
post_content = gr.Textbox(label="Post Content") | |
moderate_button = gr.Button("Moderate Post") | |
moderation_result = gr.Textbox(label="Moderation Result") | |
moderate_button.click(moderate_post, post_content, moderation_result) | |
with gr.TabItem("Generate Image"): | |
image_prompt = gr.Textbox(label="Image Prompt") | |
generate_image_button = gr.Button("Generate Image") | |
generated_image = gr.Image(label="Generated Image") | |
generate_image_button.click(generate_image, image_prompt, generated_image) | |
with gr.TabItem("Moderate Image"): | |
uploaded_image = gr.Image(label="Upload Image") | |
moderate_image_button = gr.Button("Moderate Image") | |
image_moderation_result = gr.Textbox(label="Image Moderation Result") | |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result) | |
with gr.TabItem("NSFW Classification"): | |
selected_image = gr.Image(type="pil", label="Upload Image for NSFW Classification") | |
classify_button = gr.Button("Classify Image") | |
classification_result = gr.Textbox(label="Classification Result") | |
def classify_nsfw(image): | |
image_tensor = transform(image).unsqueeze(0) | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
confidence, predicted = torch.max(probabilities, 1) | |
label = model.config.id2label[predicted.item()] | |
category = label_to_category.get(label, "Unknown") | |
return f"Label: {label}, Category: {category}, Confidence: {confidence.item() * 100:.2f}%" | |
classify_button.click(classify_nsfw, selected_image, classification_result) | |
demo.launch() | |